Chapter 1: Problem 5
Evaluate the following integrals: (i) \(\int \frac{x^{7}}{\left(x^{12}-1\right)} d x\) (ii) \(\int \frac{x^{9} d x}{\left(x^{4}-1\right)^{2}}\)
Chapter 1: Problem 5
Evaluate the following integrals: (i) \(\int \frac{x^{7}}{\left(x^{12}-1\right)} d x\) (ii) \(\int \frac{x^{9} d x}{\left(x^{4}-1\right)^{2}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{d x}{\left(x^{2}+4 x\right) \sqrt{4-x^{2}}}\) (ii) \(\int \frac{d x}{\left(4 x^{2}+4 x+1\right) \sqrt{\left(4 x^{2}+4 x+5\right)}}\) (iii) \(\int \frac{d x}{\left(x^{2}+2 x+2\right) \sqrt{x^{2}+2 x-4}}\) (iv) \(\int \frac{d x}{(x+1)^{3} \sqrt{x^{2}+3 x+2}}\)
Find a substitution to reduce the integral \(\int \mathrm{R}(\mathrm{x}, \mathrm{y}) \mathrm{dx}\) when \(\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}=\mathrm{a}^{2}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)\)
Evaluate the following integrals: (i) \(\int \frac{\sqrt{x^{4}+x^{-4}+2}}{x^{3}} d x\) (ii) \(\int \frac{d x}{\sqrt{2 x+3}+\sqrt{2 x-3}} d x\) (iii) \(\int \frac{(\sqrt{x}+1)\left(x^{2}-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}} d x\) (iv) \(\int\left(\frac{1-x^{-2}}{x^{1 / 2}-x^{-1 / 2}}-\frac{2}{x^{3 / 2}}+\frac{x^{-2}-x}{x^{1 / 2}-x^{-1 / 2}}\right) d x\)
Use the integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2} d x\) to prove that \(\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}+C\)
Evaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{\left(x^{3}-x+2\right)}{\left(x^{2}+1\right)^{2}} d x\) (iii) \(\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}\) (iv) \(\int \mathrm{e}^{x}\left(\frac{1-x}{1+x}\right)^{2} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.