Chapter 1: Problem 4
Prove that, when \(x>a>b\), \(\int \frac{d x}{(x-a)^{2}(x-b)}\) \(=\frac{1}{(a-b)^{2}} \ell n \frac{x-b}{x-a}-\frac{1}{(a-b)(x-a)}+C\)
Chapter 1: Problem 4
Prove that, when \(x>a>b\), \(\int \frac{d x}{(x-a)^{2}(x-b)}\) \(=\frac{1}{(a-b)^{2}} \ell n \frac{x-b}{x-a}-\frac{1}{(a-b)(x-a)}+C\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int \frac{e^{x}\left(1+n x^{n-1}-x^{2 n}\right)}{\left(1-x^{n}\right) \sqrt{1-x^{2 n}}} d x\)
\(\int x^{3} \cos 2 x d x\)
Evaluate the following integrals : (i) \(\int \frac{\cos x}{\sqrt{1+\cos x}} d x\) (ii) \(\int \frac{\mathrm{dx}}{\sin \mathrm{x} \sin (\mathrm{x}+\alpha)}\) (iii) \(\int\\{1+\cot (x-\alpha) \cot (x+\alpha\\} d x\)
Evaluate the following integrals: $$ \int \frac{x^{3} d x}{\left(x^{2}-2 x+2\right)} $$
Use the integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2} d x\) to prove that \(\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}+C\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.