Chapter 1: Problem 4
\(\int e^{-x} \cos ^{2} x d x\)
Chapter 1: Problem 4
\(\int e^{-x} \cos ^{2} x d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: $$ \int \frac{\left(2 x^{2}-3 x\right) d x}{\sqrt{x^{2}-2 x+5}} $$
vTwo of these three antiderivatives are elementary. Find them. (A) \(\int \sqrt{1-4 \sin ^{2} \theta} d \theta\) (B) \(\int \sqrt{4-4 \sin ^{2} \theta} \mathrm{de}\) (C) \(\int \sqrt{1+\cos \theta} \mathrm{d} \theta\)
\(\int \frac{e^{x}\left(1+n x^{n-1}-x^{2 n}\right)}{\left(1-x^{n}\right) \sqrt{1-x^{2 n}}} d x\)
Use the integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2} d x\) to prove that \(\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}+C\)
Two of these three integrals are elementary; evaluate them (A) \(\int \sin ^{2} x d x\) (B) \(\int \sin \sqrt{x} d x\)\text { (C) } \int \sin x^{2} d x
What do you think about this solution?
We value your feedback to improve our textbook solutions.