Chapter 1: Problem 4
Evaluate the following integrals: $$ \int \frac{x+1}{x^{2}+x+3} d x $$
Chapter 1: Problem 4
Evaluate the following integrals: $$ \int \frac{x+1}{x^{2}+x+3} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{5 \cos ^{3} x+3 \sin ^{3} x}{\sin ^{2} x \cos ^{2} x} d x\) (ii) \(\int\left(\cos ^{6} x+\sin ^{6} x\right) d x\) (iii) \(\int \sin ^{3} x \cos \frac{x}{2} d x\) (iv) \(\int \frac{d x}{\sqrt{3} \cos x+\sin x}\)
vTwo of these three antiderivatives are elementary. Find them. (A) \(\int \sqrt{1-4 \sin ^{2} \theta} d \theta\) (B) \(\int \sqrt{4-4 \sin ^{2} \theta} \mathrm{de}\) (C) \(\int \sqrt{1+\cos \theta} \mathrm{d} \theta\)
Evaluate the following integrals : $$ \int x^{-1}\left(1+x^{1 / 3}\right)^{-3} d x $$
Evaluate the following integrals: (i) \(\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x\) (ii) \(\int \frac{\sin 2 x+\sin 5 x-\sin 3 x}{\cos x+1-2 \sin ^{2} 2 x} d x\) (iii) \(\int \frac{\cos x-\sin x}{\cos x+\sin x}(2+2 \sin 2 x) d x\) (iv) \(\int\left[\frac{\cot ^{2} 2 x-1}{2 \cot 2 x}-\cos 8 x \cot 4 x\right] d x\)
Evaluate the following integrals: (i) \(\int \sin (\ln x) \mathrm{d} x\) (ii) \(\int \mathrm{e}^{x} \sin x \sin 3 x d x\) (iii) \(\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x\) (iv) \(\int x^{3} \tan ^{-1} x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.