Chapter 1: Problem 4
Evaluate the following integrals: (i) \(\int x^{3} \ln ^{2} x d x\) (ii) \(\int \ln x \cdot \frac{1}{(x+1)^{2}} d x\) (iii) \(\int \ln (1+x)^{1+x} d x\) (iv) \(\int \frac{\mathrm{x} \mathrm{dx}}{1+\sin \mathrm{x}}\)
Chapter 1: Problem 4
Evaluate the following integrals: (i) \(\int x^{3} \ln ^{2} x d x\) (ii) \(\int \ln x \cdot \frac{1}{(x+1)^{2}} d x\) (iii) \(\int \ln (1+x)^{1+x} d x\) (iv) \(\int \frac{\mathrm{x} \mathrm{dx}}{1+\sin \mathrm{x}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right) \sqrt{\mathrm{x}}}\) (ii) \(\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+5 \mathrm{x}+6\right) \sqrt{\mathrm{x}+1}}\) (iii) \(\int \frac{d x}{\left(x^{2}-4\right) \sqrt{x+1}}\)
Evaluate the following integrals: $$ \int \frac{(x+1) \sqrt{x+2}}{\sqrt{x-2}} d x $$
\(\int x^{3} \cos 2 x d x\)
If \(I_{n}=\int \frac{x^{n}}{\sqrt{x^{2}+a^{2}}} d x(n \geq 2)\), then show that \(I_{n}=\frac{x^{n-1} \sqrt{x^{2}+a^{2}}}{n}-\frac{a^{2}(n-1)}{n} I_{n-2}\)
Evaluate the following integrals: (i) \(\int \frac{x^{3}+x^{2}+x+3}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d\) ) (ii) \(\int \frac{d x}{x^{4}\left(x^{3}+1\right)^{2}}\) (iii) \(\int \frac{x^{7}+2}{\left(x^{2}+x+1\right)^{2}} d x\) (iv) \(\int \frac{3 x^{4}+4}{x^{2}\left(x^{2}+1\right)^{3}} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.