Chapter 1: Problem 4
Evaluate the following integrals: (i) \(\int \sqrt{1+\sin x}\) (ii) \(\int \frac{\cos ^{4} x-\sin ^{4} x}{\sqrt{1+\cos 4 x}} d x\) (iii) \(\int \sin x \sin 2 x \sin 3 x d x\) (iv) \(\int \sin x \cos x \cos 2 x \cos 4 x d x\)
Chapter 1: Problem 4
Evaluate the following integrals: (i) \(\int \sqrt{1+\sin x}\) (ii) \(\int \frac{\cos ^{4} x-\sin ^{4} x}{\sqrt{1+\cos 4 x}} d x\) (iii) \(\int \sin x \sin 2 x \sin 3 x d x\) (iv) \(\int \sin x \cos x \cos 2 x \cos 4 x d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFrom the fact that \(\int(\sin x) / x d x\) is not elementary, deduce that the following are not elementary : (A) \(\int\left(\cos ^{2} x\right) / x^{2} d x\) (B) \(\int\left(\sin ^{2} x\right) / x^{2} d x\) (C) \(\int \sin \mathrm{e}^{x} \mathrm{dx}\) (D) \(\int \cos x \ln x d x\)
Evaluate \(\int \frac{9 x^{3}-3 x^{2}+2}{\sqrt{3 x^{2}-2 x+1}} d x\)
Evaluate the following integrals : (i) \(\int \frac{\cos x}{\sqrt{1+\cos x}} d x\) (ii) \(\int \frac{\mathrm{dx}}{\sin \mathrm{x} \sin (\mathrm{x}+\alpha)}\) (iii) \(\int\\{1+\cot (x-\alpha) \cot (x+\alpha\\} d x\)
Evaluate the following integrals: $$ \int \frac{x^{2} d x}{\sqrt{1-2 x-x^{2}}} $$
Evaluate the following integrals : $$ \int \frac{x^{5} d x}{\left(1+x^{3}\right)^{1 / 2}} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.