Chapter 1: Problem 4
Evaluate (i) \(\int \frac{\mathrm{dx}}{\mathrm{x} \ln \mathrm{x}}\) (ii) \(\int \frac{\mathrm{dx}}{\mathrm{x} \ln \mathrm{x} \ln \ln \mathrm{x}}\)
Chapter 1: Problem 4
Evaluate (i) \(\int \frac{\mathrm{dx}}{\mathrm{x} \ln \mathrm{x}}\) (ii) \(\int \frac{\mathrm{dx}}{\mathrm{x} \ln \mathrm{x} \ln \ln \mathrm{x}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: $$ \int \frac{x^{2} d x}{\sqrt{1-2 x-x^{2}}} $$
Three of these six antiderivatives are elementary. Find them. (A) \(\int x \cos x d x\) (B) \(\int \frac{\cos x}{x} d x\) (C) \(\int \frac{x d x}{\ln x}\) (D) \(\int \frac{\ln x^{2}}{x} d x\) (E) \(\int \sqrt{x-1} \sqrt{x} \sqrt{x+1} d x\) (F) \(\int \sqrt{x-1} \sqrt{x+1} x d x\)
Evaluate the following integrals: $$ \int \frac{x^{3}+1}{\sqrt{x^{2}+x}} d x $$
Evaluate the following integrals : $$\int \frac{d x}{x-\sqrt{x^{2}-1}}$$
Evaluate the following integrals: (i) \(\int \frac{\sqrt{x^{4}+x^{-4}+2}}{x^{3}} d x\) (ii) \(\int \frac{d x}{\sqrt{2 x+3}+\sqrt{2 x-3}} d x\) (iii) \(\int \frac{(\sqrt{x}+1)\left(x^{2}-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}} d x\) (iv) \(\int\left(\frac{1-x^{-2}}{x^{1 / 2}-x^{-1 / 2}}-\frac{2}{x^{3 / 2}}+\frac{x^{-2}-x}{x^{1 / 2}-x^{-1 / 2}}\right) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.