Chapter 1: Problem 3
Evaluate the following integrals : $$\int \frac{d x}{\sqrt{\left(2 x-x^{2}\right)^{3}}}$$
Chapter 1: Problem 3
Evaluate the following integrals : $$\int \frac{d x}{\sqrt{\left(2 x-x^{2}\right)^{3}}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\mathrm{x} \sqrt{\left(9 \mathrm{x}^{2}+4 \mathrm{x}+1\right)}}\) (ii) \(\int \frac{d x}{(1+x) \sqrt{\left(1+x-x^{2}\right)}}\) (iii) \(\int \frac{\mathrm{dx}}{(1+\mathrm{x}) \sqrt{1+2 \mathrm{x}-\mathrm{x}^{2}}}\) (iv) \(\int \frac{2 x d x}{\left(1-x^{2}\right) \sqrt{\left(x^{4}-1\right)}}\)
Evaluate the following integrals: (i) \(\int \frac{d x}{(1+x)^{3 / 2}+(1+x)^{1 / 2}}\) (ii) \(\int \frac{\mathrm{dx}}{\sqrt[4]{5-x}+\sqrt{5-x}}\) (iii) \(\int \frac{\mathrm{dx}}{\sqrt{(\mathrm{x}+2)}+\sqrt[4]{(\mathrm{x}+2)}}\) (iv) \(\int \frac{\sqrt{x+1}+2}{(x+1)^{2}-\sqrt{x+1}} d x\)
\(\int\left(x^{2}-2 x+3\right) \ell n x d x\)
Two of these three integrals are elementary; evaluate them (A) \(\int \sin ^{2} x d x\) (B) \(\int \sin \sqrt{x} d x\)\text { (C) } \int \sin x^{2} d x
Assuming that \(\int\left(\mathrm{e}^{\mathrm{x}} / \mathrm{x}\right) \mathrm{d} \mathrm{x}\) is not elementary (a theorem of Liouville), prove that \(\int 1 / \ln \mathrm{x} \mathrm{dx}\) is not elementary.
What do you think about this solution?
We value your feedback to improve our textbook solutions.