Chapter 1: Problem 27
Find a polynomial P of degree \(\leq 5\) with \(\mathrm{P}(0)=1\), \(\mathrm{P}(1)=2, \mathrm{P}^{\prime}(0)=\mathrm{P}^{\prime \prime}(0)=\mathrm{P}^{\prime}(1)=\mathrm{P}^{\prime \prime}(1)=0\).
Chapter 1: Problem 27
Find a polynomial P of degree \(\leq 5\) with \(\mathrm{P}(0)=1\), \(\mathrm{P}(1)=2, \mathrm{P}^{\prime}(0)=\mathrm{P}^{\prime \prime}(0)=\mathrm{P}^{\prime}(1)=\mathrm{P}^{\prime \prime}(1)=0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeApplying Ostrogradsky's method, find the following integrals: (i) \(\int \frac{d x}{(x+1)^{2}\left(x^{2}+1\right)^{2}}\) (ii) \(\int \frac{d x}{\left(x^{4}+1\right)^{2}}\) (iii) \(\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{4}}\) (iv) \(\int \frac{x^{4}-2 x^{2}+2}{\left(x^{2}-2 x+2\right)^{2}} d x\)
Two of these three integrals are elementary; evaluate them (A) \(\int \sin ^{2} x d x\) (B) \(\int \sin \sqrt{x} d x\)\text { (C) } \int \sin x^{2} d x
Assuming that \(\int\left(\mathrm{e}^{\mathrm{x}} / \mathrm{x}\right) \mathrm{d} \mathrm{x}\) is not elementary (a theorem of Liouville), prove that \(\int 1 / \ln \mathrm{x} \mathrm{dx}\) is not elementary.
Evaluate the following integrals: (i) \(\int \frac{d x}{x^{3} \sqrt{1-x^{2}}}\) (ii) \(\int \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\) (iii) \(\int \frac{x^{2} d x}{\left(a+c x^{2}\right)^{7 / 2}}\) (iv) \(\int \frac{x^{3} d x}{\left(a^{2}+x^{2}\right)^{3 / 2}}\)
Evaluate the following integrals: (i) \(\int \frac{d x}{\left(3+4 x^{2}\right)\left(4-3 x^{2}\right)^{1 / 2}}\) (ii) \(\int \frac{\mathrm{dx}}{\left(2 \mathrm{x}^{2}+1\right) \sqrt{1-\mathrm{x}^{2}}}\) (iii) \(\int \frac{\sqrt{1+x^{2}} d x}{2+x^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.