Chapter 1: Problem 21
Evaluate the following integrals: $$ \int \frac{x^{3}+1}{\sqrt{x^{2}+x}} d x $$
Chapter 1: Problem 21
Evaluate the following integrals: $$ \int \frac{x^{3}+1}{\sqrt{x^{2}+x}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{\left(3 x^{2}-2\right) d x}{x^{4}-3 x^{2}-4}\) (ii) \(\int \frac{x^{2} d x}{\left(x^{2}+1\right)\left(2 x^{2}+1\right)}\) (iii) \(\int \frac{x^{2} d x}{\left(a^{2}-x^{2}\right)^{2}}\) (iv) \(\int \frac{d x}{\left(x^{2}-4 x+4\right)\left(x^{2}-4 x+5\right)}\)
Obtain a reduction formula for the following integrals (i) \(\int x^{n} e^{x} d x(n \geq 1)\) (ii) \(\int(\ln x)^{n} d x(n \geq 1)\)
Evaluate the following integrals : $$ x\left(1+8 x^{3}\right)^{1 / 3} d x $$
Evaluate the following integrals: (i) \(\int \frac{d x}{\left(x^{2}+4 x\right) \sqrt{4-x^{2}}}\) (ii) \(\int \frac{d x}{\left(4 x^{2}+4 x+1\right) \sqrt{\left(4 x^{2}+4 x+5\right)}}\) (iii) \(\int \frac{d x}{\left(x^{2}+2 x+2\right) \sqrt{x^{2}+2 x-4}}\) (iv) \(\int \frac{d x}{(x+1)^{3} \sqrt{x^{2}+3 x+2}}\)
vTwo of these three antiderivatives are elementary. Find them. (A) \(\int \sqrt{1-4 \sin ^{2} \theta} d \theta\) (B) \(\int \sqrt{4-4 \sin ^{2} \theta} \mathrm{de}\) (C) \(\int \sqrt{1+\cos \theta} \mathrm{d} \theta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.