Chapter 1: Problem 2
Obtain a reduction formula for the following integrals (i) \(\int x^{n} e^{x} d x(n \geq 1)\) (ii) \(\int(\ln x)^{n} d x(n \geq 1)\)
Chapter 1: Problem 2
Obtain a reduction formula for the following integrals (i) \(\int x^{n} e^{x} d x(n \geq 1)\) (ii) \(\int(\ln x)^{n} d x(n \geq 1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}}[\ln (\sec x+\tan \mathrm{x})+\sec \mathrm{x}] \mathrm{d} \mathrm{x}\) (ii) \(\int \mathrm{e}^{x}\left(\log x+\frac{1}{x^{2}}\right) d x\)
Evaluate the following integrals: (i) \(\int x \sin x \cos ^{2} x d x\) (ii) \(\int x \sec ^{2} x \tan x d x\) (iii) \(\int x \cos x \cos 2 x d x\)
Evaluate the following integrals : $$ \int x^{1 / 4}\left(2+3 x^{2}\right)^{3} d x $$
Evaluate the following integrals : $$ \int x^{-1}\left(1+x^{1 / 3}\right)^{-3} d x $$
\(\int \frac{\sqrt{x^{2}+1}}{x^{4}} \ln \left(1+\frac{1}{x^{2}}\right) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.