Chapter 1: Problem 2
Evaluate the following integrals : $$\int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}-1}$$
Chapter 1: Problem 2
Evaluate the following integrals : $$\int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}-1}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{x^{4}}{(1-x)^{3}} d x\) (ii) \(\int \frac{6 x^{2}-12 x+4}{x^{2}(x-2)^{2}} d x\)
Evaluate the following integrals: (i) \(\int \frac{x d x}{\left(x^{2}-3 x+2\right) \sqrt{x^{2}-4 x+3}}\) (ii) \(\int \frac{\left(x^{2}+1\right) d x}{\left(x^{2}+2 x+2\right) \sqrt{(x+1)}}\) (iii) \(\int \frac{(2 x+3) d x}{\left(x^{2}+2 x+3\right) \sqrt{x^{2}+2 x+4}}\)
Evaluate the following integrals: (i) \(\int \frac{2 x^{3}+3 x^{2}+4 x+5}{2 x+1} d x\) (ii) \(\int\left(\frac{x^{-6}-64}{4+2 x^{-1}+x^{-2}}, \frac{x^{2}}{4-4 x^{-1}+x^{-2}} \frac{4 x^{2}(2 x+1)}{1-2 x}\right) \mathrm{dx}\) (iii) \(\int\left(\frac{\sqrt{x}}{2}-\frac{1}{2 \sqrt{x}}\right)^{2}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) d x\) (iv) \(\int \frac{\sqrt{1-x^{2}}+1}{\sqrt{1-x}+1 / \sqrt{1+x}} d x\).
Evaluate the following integrals: (i) \(\int x^{3} e^{x} d x\) (ii) \(\int x^{3} \cos x d x\) (iii) \(\int x^{3} / n^{2} x d x\)
From the fact that \(\int(\sin x) / x d x\) is not elementary, deduce that the following are not elementary : (A) \(\int\left(\cos ^{2} x\right) / x^{2} d x\) (B) \(\int\left(\sin ^{2} x\right) / x^{2} d x\) (C) \(\int \sin \mathrm{e}^{x} \mathrm{dx}\) (D) \(\int \cos x \ln x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.