Chapter 1: Problem 2
Evaluate the following integrals : $$\int \frac{\mathrm{dx}}{\mathrm{x}^{4}+\mathrm{x}^{2}+1}$$
Chapter 1: Problem 2
Evaluate the following integrals : $$\int \frac{\mathrm{dx}}{\mathrm{x}^{4}+\mathrm{x}^{2}+1}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$ \int \frac{d x}{x^{11} \sqrt{1+x^{4}}} $$
Evaluate the following integrals : $$ \int x^{-1}\left(1+x^{1 / 3}\right)^{-3} d x $$
If \(I_{n}=\int \frac{x^{n}}{\sqrt{x^{2}+a^{2}}} d x(n \geq 2)\), then show that \(I_{n}=\frac{x^{n-1} \sqrt{x^{2}+a^{2}}}{n}-\frac{a^{2}(n-1)}{n} I_{n-2}\)
Evaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{\left(x^{3}-x+2\right)}{\left(x^{2}+1\right)^{2}} d x\) (iii) \(\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}\) (iv) \(\int \mathrm{e}^{x}\left(\frac{1-x}{1+x}\right)^{2} d x\)
Evaluate the following integrals: (i) \(\int \sin (\ln x) \mathrm{d} x\) (ii) \(\int \mathrm{e}^{x} \sin x \sin 3 x d x\) (iii) \(\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x\) (iv) \(\int x^{3} \tan ^{-1} x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.