Chapter 1: Problem 2
Evaluate the following integrals : $$ \int \frac{\left(1-x^{2}\right) d x}{x^{1 / 2}\left(1+x^{2}\right)^{3 / 2}} $$
Chapter 1: Problem 2
Evaluate the following integrals : $$ \int \frac{\left(1-x^{2}\right) d x}{x^{1 / 2}\left(1+x^{2}\right)^{3 / 2}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: $$ \int \frac{x^{3}+1}{\sqrt{x^{2}+x}} d x $$
Evaluate the following integrals: (i) \(\int \frac{2 x+\sin 2 x}{1+\cos 2 x} d x\) (ii) \(\int\left(\tan (\ln x)+\sec ^{2}(\ln x)\right\\} d x\) (iii) \(\int \frac{x+\sqrt{\left(1-x^{2}\right)} \sin ^{-1} x}{\sqrt{\left(1-x^{2}\right)}} d x\)
Evaluate the following integrals : $$\int \frac{\left(x+\sqrt{1+x^{2}}\right)^{15}}{\sqrt{1+x^{2}}} d x$$
Evaluate the following integrals : $$ x\left(1+8 x^{3}\right)^{1 / 3} d x $$
\(\int \frac{\sqrt{x^{2}+1}}{x^{4}} \ln \left(1+\frac{1}{x^{2}}\right) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.