Chapter 1: Problem 19
Given the continuous periodic function \(\mathrm{f}(\mathrm{x})\), \(\mathrm{x} \in \mathrm{R}\). Can we assert that the antiderivative of that function is a periodic function ?
Chapter 1: Problem 19
Given the continuous periodic function \(\mathrm{f}(\mathrm{x})\), \(\mathrm{x} \in \mathrm{R}\). Can we assert that the antiderivative of that function is a periodic function ?
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$\int \frac{d x}{x \sqrt{\left(x^{2}-x+2\right)}}$$
Evaluate the following integrals : $$\int \frac{x d x}{x-\sqrt{x^{2}-1}}$$
Evaluate the following integrals: (i) \(\int \frac{d x}{\sin x(3+2 \cos x)}\) (ii) \(\int \frac{\mathrm{d} \mathrm{x}}{\sin 2 \mathrm{x}-2 \sin \mathrm{x}}\) (iii) \(\int \frac{\sin \frac{\theta}{2} \tan \frac{\theta}{2} \mathrm{~d} \theta}{\cos \theta}\) (iv) \(\int \frac{d x}{\ln x^{x}\left[(\ln x)^{2}-3 \ln x-10\right]}\)
Find polynomials \(\mathrm{P}\) and \(\mathrm{Q}\) such that \(\int\\{(3 x-1) \cos x+(1-2 x) \sin x\\} d x=P \cos x+Q \sin x+C\)
Evaluate the following integrals : (i) \(\int \frac{1}{x \sqrt{\left(1+x^{6}\right)}} d x\) (ii) \(\int \frac{x d x}{(p x+q)^{3 / 2}}\) (iii) \(\int \frac{x^{5}}{\sqrt{\left(1+x^{2}\right.}} d x\) (iv) \(\int \frac{d x}{x^{3} \sqrt{x^{2}+1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.