Chapter 1: Problem 19
Evaluate the following integrals: $$ \int \frac{(x+1) \sqrt{x+2}}{\sqrt{x-2}} d x $$
Chapter 1: Problem 19
Evaluate the following integrals: $$ \int \frac{(x+1) \sqrt{x+2}}{\sqrt{x-2}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for free(i) There are two values of a for which \(\int \sqrt{1+a \sin ^{2} \theta} d \theta\) is elementary. What are they? (ii) From (1) deduce that there are two values of a for which \(\int \frac{\sqrt{1+a x^{2}}}{\sqrt{1-x^{2}}} \mathrm{dx}\) is elementary.
Evaluate the following integrals: (i) \(\int \frac{\sqrt{x}+\sqrt[3]{x}}{\sqrt[4]{x^{5}}-\sqrt[6]{x^{7}}} d x\) (ii) \(\int \frac{x^{-2 / 3}}{2 x^{1 / 3}+(x-1)^{1 / 3}} d x\) (iii) \(\int \frac{d x}{x\left(2+\sqrt[3]{\frac{x-1}{x}}\right)}\)
Evaluate the following integrals: (i) \(\int \frac{\ln \cos x}{\cos ^{2} x} d x\) (ii) \(\int \sin x \cdot \ln \tan x d x\) (iii) \(\int \ln \left(1+2 x^{2}+x^{4}\right) d x\) (iv) \(\int \mathrm{e}^{\mathrm{x}}(1+\mathrm{x}) \ln \left(\mathrm{xe}^{\mathrm{x}}\right) \mathrm{dx}\)
Evaluate the following integrals : $$ \int x^{-1}\left(1+x^{1 / 3}\right)^{-3} d x $$
Evaluate the following integrals : $$\int \frac{x d x}{x-\sqrt{x^{2}-1}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.