Chapter 1: Problem 17
Evaluate the following integrals: $$ \int \frac{x^{3} d x}{\left(x^{2}-2 x+2\right)} $$
Chapter 1: Problem 17
Evaluate the following integrals: $$ \int \frac{x^{3} d x}{\left(x^{2}-2 x+2\right)} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: $$ \int \frac{x^{2}+2 x-1}{2 x^{2}+3 x+1} d x $$
Two of these antiderivatives are elementary functions; find them. (A) \(\int \ln x d x\) (B) \(\int \frac{\ln x d x}{x}\) (C) \(\int \frac{d x}{\ln x}\)
Prove that, when \(x>a>b\), \(\int \frac{d x}{(x-a)^{2}(x-b)}\) \(=\frac{1}{(a-b)^{2}} \ell n \frac{x-b}{x-a}-\frac{1}{(a-b)(x-a)}+C\)
Evaluate the following integrals : $$\int \frac{d x}{x \sqrt{\left(x^{2}-x+2\right)}}$$
Evaluate the following integrals: (i) \(\int \sin (\ln x) \mathrm{d} x\) (ii) \(\int \mathrm{e}^{x} \sin x \sin 3 x d x\) (iii) \(\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x\) (iv) \(\int x^{3} \tan ^{-1} x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.