Chapter 1: Problem 16
Evaluate the following integrals: (i) \(\int \frac{d x}{x^{2}\left(1+x^{5}\right)^{4 / 5}}\) (ii) \(\int \frac{x^{2}-1}{x \sqrt{\left(1+x^{4}\right)}} \mathrm{dx}\)
Chapter 1: Problem 16
Evaluate the following integrals: (i) \(\int \frac{d x}{x^{2}\left(1+x^{5}\right)^{4 / 5}}\) (ii) \(\int \frac{x^{2}-1}{x \sqrt{\left(1+x^{4}\right)}} \mathrm{dx}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{x d x}{\left(x^{2}-3 x+2\right) \sqrt{x^{2}-4 x+3}}\) (ii) \(\int \frac{\left(x^{2}+1\right) d x}{\left(x^{2}+2 x+2\right) \sqrt{(x+1)}}\) (iii) \(\int \frac{(2 x+3) d x}{\left(x^{2}+2 x+3\right) \sqrt{x^{2}+2 x+4}}\)
Evaluate the following integrals: (i) \(\int \frac{5 x^{2}-12}{\left(x^{2}-6 x+13\right)^{2}} d x\) (ii) \(\int \frac{x^{3}+x-1}{\left(x^{2}+2\right)^{2}} d x\) (iii) \(\int \frac{x^{6}+x^{4}-4 x^{2}-2}{x^{3}\left(x^{2}+1\right)^{2}} d x\) (iv) \(\int \frac{d x}{x^{4}\left(x^{3}+1\right)^{2}}\)
Evaluate \(\int \frac{9 x^{3}-3 x^{2}+2}{\sqrt{3 x^{2}-2 x+1}} d x\)
From the fact that \(\int x \tan x d x\) is not elementary, deduce that the following are not elementary. (A) \(\int x^{2} \sec ^{2} x d x\) (B) \(\int x^{2} \tan ^{2} x d x\) (C) \(\int \frac{x^{2} d x}{1+\cos x}\)
\(\int\left(x^{3}+3 x+1\right) e^{3 x} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.