Chapter 1: Problem 15
Evaluate the following integrals: $$ \int \frac{x^{2} d x}{\sqrt{1-2 x-x^{2}}} $$
Chapter 1: Problem 15
Evaluate the following integrals: $$ \int \frac{x^{2} d x}{\sqrt{1-2 x-x^{2}}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{\left(x^{3}-x+2\right)}{\left(x^{2}+1\right)^{2}} d x\) (iii) \(\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}\) (iv) \(\int \mathrm{e}^{x}\left(\frac{1-x}{1+x}\right)^{2} d x\)
Obtain a reduction formula for the following integrals (i) \(\int x^{n} e^{x} d x(n \geq 1)\) (ii) \(\int(\ln x)^{n} d x(n \geq 1)\)
Evaluate the following integrals : $$ \int \frac{\left(1-x^{2}\right) d x}{x^{1 / 2}\left(1+x^{2}\right)^{3 / 2}} $$
Prove that, when \(x>a>b\), \(\int \frac{d x}{(x-a)^{2}(x-b)}\) \(=\frac{1}{(a-b)^{2}} \ell n \frac{x-b}{x-a}-\frac{1}{(a-b)(x-a)}+C\)
Evaluate the following integrals: (i) \(\int \frac{\ln \cos x}{\cos ^{2} x} d x\) (ii) \(\int \sin x \cdot \ln \tan x d x\) (iii) \(\int \ln \left(1+2 x^{2}+x^{4}\right) d x\) (iv) \(\int \mathrm{e}^{\mathrm{x}}(1+\mathrm{x}) \ln \left(\mathrm{xe}^{\mathrm{x}}\right) \mathrm{dx}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.