Chapter 1: Problem 15
Evaluate the following integrals: $$ \int \frac{\sin x d x}{\sqrt{\cos ^{2} x+4 \cos x+1}} $$
Chapter 1: Problem 15
Evaluate the following integrals: $$ \int \frac{\sin x d x}{\sqrt{\cos ^{2} x+4 \cos x+1}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$\int \frac{d x}{\sqrt{\left(2 x-x^{2}\right)^{3}}}$$
Two of these three integrals are elementary; evaluate them (A) \(\int \sin ^{2} x d x\) (B) \(\int \sin \sqrt{x} d x\)\text { (C) } \int \sin x^{2} d x
Evaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{(2 \mathrm{x}+1) \sqrt{(4 \mathrm{x}+3)}}\) (ii) \(\int \frac{1}{(x-3) \sqrt{x+1}} \mathrm{dx}\)
Evaluate the following integrals : $$ \int \frac{\sqrt[3]{1+x^{3}}}{x^{2}} d x $$
Applying Ostrogradsky's method, find the following integrals: (i) \(\int \frac{d x}{(x+1)^{2}\left(x^{2}+1\right)^{2}}\) (ii) \(\int \frac{d x}{\left(x^{4}+1\right)^{2}}\) (iii) \(\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{4}}\) (iv) \(\int \frac{x^{4}-2 x^{2}+2}{\left(x^{2}-2 x+2\right)^{2}} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.