Chapter 1: Problem 15
Evaluate the following integrals: (i) \(\int x \sin x \cos ^{2} x d x\) (ii) \(\int x \sec ^{2} x \tan x d x\) (iii) \(\int x \cos x \cos 2 x d x\)
Chapter 1: Problem 15
Evaluate the following integrals: (i) \(\int x \sin x \cos ^{2} x d x\) (ii) \(\int x \sec ^{2} x \tan x d x\) (iii) \(\int x \cos x \cos 2 x d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThree of these six antiderivatives are elementary. Find them. (A) \(\int x \cos x d x\) (B) \(\int \frac{\cos x}{x} d x\) (C) \(\int \frac{x d x}{\ln x}\) (D) \(\int \frac{\ln x^{2}}{x} d x\) (E) \(\int \sqrt{x-1} \sqrt{x} \sqrt{x+1} d x\) (F) \(\int \sqrt{x-1} \sqrt{x+1} x d x\)
Evaluate the following integrals : $$\int \frac{\left(x+\sqrt{1+x^{2}}\right)^{15}}{\sqrt{1+x^{2}}} d x$$
If \(I_{\mathrm{m}, \mathrm{n}}=\int \mathrm{x}^{\mathrm{m}} \cos \mathrm{n} \mathrm{x} \mathrm{dx}(\mathrm{n} \neq 0)\), then show that \(I_{m, n}=\frac{x^{m} \sin n x}{n}+\frac{m x^{m-1} \cos n x}{n^{2}}-\frac{m(m-1)}{n^{2}} I_{m-2, n^{-}}\)
Evaluate the following integrals: (i) \(\int \sin (\ln x) \mathrm{d} x\) (ii) \(\int \mathrm{e}^{x} \sin x \sin 3 x d x\) (iii) \(\int \sin ^{-1} \sqrt{\frac{x}{a+x}} d x\) (iv) \(\int x^{3} \tan ^{-1} x d x\)
Evaluate the following integrals: (i) \(\int \frac{x^{3}+x^{2}+x+3}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d\) ) (ii) \(\int \frac{d x}{x^{4}\left(x^{3}+1\right)^{2}}\) (iii) \(\int \frac{x^{7}+2}{\left(x^{2}+x+1\right)^{2}} d x\) (iv) \(\int \frac{3 x^{4}+4}{x^{2}\left(x^{2}+1\right)^{3}} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.