Chapter 1: Problem 14
Evaluate the following integrals: $$ \int \frac{d x}{\left(9+x^{2}\right)^{2}} $$
Chapter 1: Problem 14
Evaluate the following integrals: $$ \int \frac{d x}{\left(9+x^{2}\right)^{2}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freevTwo of these three antiderivatives are elementary. Find them. (A) \(\int \sqrt{1-4 \sin ^{2} \theta} d \theta\) (B) \(\int \sqrt{4-4 \sin ^{2} \theta} \mathrm{de}\) (C) \(\int \sqrt{1+\cos \theta} \mathrm{d} \theta\)
Evaluate the following integrals : $$\int \frac{d x}{x-\sqrt{x^{2}+2 x+4}}$$
From the fact that \(\int x \tan x d x\) is not elementary, deduce that the following are not elementary. (A) \(\int x^{2} \sec ^{2} x d x\) (B) \(\int x^{2} \tan ^{2} x d x\) (C) \(\int \frac{x^{2} d x}{1+\cos x}\)
Evaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}} \frac{\left(\mathrm{x}^{2}-3 \mathrm{x}+3\right)}{(\mathrm{x}+2)^{2}} \mathrm{dx}\) (ii) \(\int \frac{\mathrm{e}^{\mathrm{x}}\left(\mathrm{x}^{2}+1\right)}{(\mathrm{x}+1)^{2}} \mathrm{dx}\) (iii) \(\int \mathrm{e}^{x} \frac{(1-x)^{2}}{\left(1+x^{2}\right)^{2}} d x\) (iv) \(\int \frac{x^{2} e^{x}}{(x+2)^{2}} d x\)
Evaluate the following integrals: (i) \(\int x^{3} e^{x} d x\) (ii) \(\int x^{3} \cos x d x\) (iii) \(\int x^{3} / n^{2} x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.