Chapter 1: Problem 14
Evaluate the following integrals: $$ \int \frac{\cos x d x}{\sin ^{2} x-6 \sin x+12} d x $$
Chapter 1: Problem 14
Evaluate the following integrals: $$ \int \frac{\cos x d x}{\sin ^{2} x-6 \sin x+12} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\int \frac{x^{3}-6 x^{2}+11 x-6}{\sqrt{x^{2}+4 x+3}} d x\)
Evaluate the following integrals : (i) \(\int \frac{\cos x}{\sqrt{1+\cos x}} d x\) (ii) \(\int \frac{\mathrm{dx}}{\sin \mathrm{x} \sin (\mathrm{x}+\alpha)}\) (iii) \(\int\\{1+\cot (x-\alpha) \cot (x+\alpha\\} d x\)
Evaluate the following integrals: $$ \int \frac{x^{3}+1}{\sqrt{x^{2}+x}} d x $$
If \(I_{n}=\int \frac{x^{n}}{\sqrt{x^{2}+a^{2}}} d x(n \geq 2)\), then show that \(I_{n}=\frac{x^{n-1} \sqrt{x^{2}+a^{2}}}{n}-\frac{a^{2}(n-1)}{n} I_{n-2}\)
Evaluate the following integrals: (i) \(\int \frac{5 \cos ^{3} x+3 \sin ^{3} x}{\sin ^{2} x \cos ^{2} x} d x\) (ii) \(\int\left(\cos ^{6} x+\sin ^{6} x\right) d x\) (iii) \(\int \sin ^{3} x \cos \frac{x}{2} d x\) (iv) \(\int \frac{d x}{\sqrt{3} \cos x+\sin x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.