Chapter 1: Problem 14
Evaluate the following integrals: (i) \(\int \frac{d x}{x \sqrt{25 x^{2}-2}}\) (ii) \(\int \frac{\mathrm{dx}}{(\mathrm{x}+1) \sqrt{\mathrm{x}^{2}+2 \mathrm{x}}}\) (iii) \(\int \frac{d x}{(2 x-1) \sqrt{(2 x-1)^{2}-4}}\)
Chapter 1: Problem 14
Evaluate the following integrals: (i) \(\int \frac{d x}{x \sqrt{25 x^{2}-2}}\) (ii) \(\int \frac{\mathrm{dx}}{(\mathrm{x}+1) \sqrt{\mathrm{x}^{2}+2 \mathrm{x}}}\) (iii) \(\int \frac{d x}{(2 x-1) \sqrt{(2 x-1)^{2}-4}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$\int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}-1}$$
Use the formula \(\int \mathrm{e}^{a x} \mathrm{dx}=\mathrm{a}^{-1} \mathrm{e}^{\mathrm{ax}}\) to prove that (i) \(\int x e^{a x} d x=e^{a x}\left(x a^{-1}-a^{-2}\right)+C\) (ii) \(\int x^{2} e^{a x} d x=e^{a x}\left(x^{2} a^{-1}-2 x a^{-2}+2 a^{-3}\right)+C\) (iii) \(\int x e^{x} d x=e^{x}(x-1)+C\)
Evaluate the following integrals : $$\int \frac{d x}{\sqrt{\left(2 x-x^{2}\right)^{3}}}$$
Evaluate the following integrals : $$ \int x^{5} \sqrt[3]{\left(1+x^{3}\right)^{2}} d x $$
(i) There are two values of a for which \(\int \sqrt{1+a \sin ^{2} \theta} d \theta\) is elementary. What are they? (ii) From (1) deduce that there are two values of a for which \(\int \frac{\sqrt{1+a x^{2}}}{\sqrt{1-x^{2}}} \mathrm{dx}\) is elementary.
What do you think about this solution?
We value your feedback to improve our textbook solutions.