Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the following integrals: (i) \(\int \frac{5 \cos ^{3} x+3 \sin ^{3} x}{\sin ^{2} x \cos ^{2} x} d x\) (ii) \(\int\left(\cos ^{6} x+\sin ^{6} x\right) d x\) (iii) \(\int \sin ^{3} x \cos \frac{x}{2} d x\) (iv) \(\int \frac{d x}{\sqrt{3} \cos x+\sin x}\)

Short Answer

Expert verified
Question: Evaluate the following integrals: (i) \(\int \frac{5\cos x+3\sin x}{\sin^2 x\cos^2 x} dx\) (ii) \(\int \left(\cos^6 x+\sin^6 x\right)dx\) (iii) \(\int \sin^3x\cos\frac{x}{2}dx\) (iv) \(\int \frac{dx}{\sqrt{3}\cos x+\sin x}\) Solution: (i) \(5\ln|\sec x| - 3\ln|\csc x+\cot x| + C\) (ii) \(\frac{3}{16}\sin 4x - \frac{3}{8}\sin 2x +x +\frac{1}{32}\sin 6x +C\) (iii) \(2\cos^2\frac{x}{2} - \frac{1}{2}\cos^4\frac{x}{2} + C\) (iv) \(\frac{1}{2}\tan^2x + \ln|\sqrt{3}\tan x| + C\)

Step by step solution

01

Simplify the integrand

Divide both the numerator and denominator of the integrand function by \(\sin^2x\cos^2x\). We get $$\int \frac{\frac{5\cos x}{\sin x \cos x} + \frac{3\sin x}{\sin x \cos x}}{1}dx.$$ Now, simplifying gives $$\int (5\tan x + 3\csc x) dx.$$
02

Evaluate the integral

Now we have $$\int (5\tan x + 3\csc x) dx = 5\int \tan x dx + 3\int \csc x dx.$$ Using known antiderivatives, we get the final result $$5\ln|\sec x| - 3\ln |\csc x+\cot x| + C.$$ (ii)
03

Use a trigonometric identity

Rewrite the integral using the identity \(\sin^2x+\cos^2x=1\) and the fact \((a+b)^3=a^3+b^3+3ab(a+b)\), we get $$\int\left(\cos ^{6} x+\sin ^{6} x\right) d x = \int \left(\cos^2x\right)^3dx + \int \left(\sin^2x\right)^3 dx + \int 3\sin^2x\cos^2x\left(\sin^2x+\cos^2x\right)dx$$
04

Evaluate the integral

Integrating the above expression, we get $$\frac{3}{16}\sin 4x - \frac{3}{8}\sin 2x +x +\frac{1}{32}\sin 6x +C.$$ (iii)
05

Apply substitution

Let \(u = \cos\frac{x}{2}\). Then \(du = \frac{-1}{2}\sin\frac{x}{2}dx\). In addition, notice that \(\sin^3x=(\sin^2x)(\sin x)=(1-\cos^2x)(2\sin\frac{x}{2}\cos\frac{x}{2})\).
06

Evaluate the integral

Now we write the integral in terms of \(u\): $$\int \sin ^{3} x \cos \frac{x}{2} d x = 2\int (1-u^2)(2u)du.$$ $$= 4\int(u-u^3)du=4\left(\frac{1}{2}u^2-\frac{1}{4}u^4\right)+C$$ Substituting back \(u = \cos\frac{x}{2}\) gives the final result $$2\cos^2\frac{x}{2} - \frac{1}{2}\cos^4\frac{x}{2} + C.$$ (iv)
07

Apply substitution

Let \(u=\sqrt{3}\tan x\). Then \(du=\sqrt{3}\sec^2x dx\). Note that \(\frac{1}{\cos^2x}=\sec^2x=1+\tan^2x=1+\frac{u^2}{3}\).
08

Evaluate the integral

Now we write the integral in terms of \(u\): $$\int \frac{dx}{\sqrt{3}\cos x+\sin x} = \frac{1}{\sqrt{3}}\int \frac{\sec^2x dx}{u+3} = \frac{1}{\sqrt{3}}\int \frac{1+\frac{u^2}{3}}{u}du.$$ Rewriting the above expression $$\int \frac{u^2+3}{3u} du = \frac{1}{\sqrt{3}}\int\left(\frac{u^2}{3u} + \frac{3}{u}\right)du$$ Now, integrate the expression: $$\frac{1}{\sqrt{3}}\left(\frac{1}{3}\int udu + 3\int \frac{1}{u}du\right) = \frac{1}{\sqrt{3}}\left(\frac{1}{6}u^2 + 3\ln |u|\right) + C.$$ Substituting back \(u=\sqrt{3}\tan x\) gives the final result: $$\frac{1}{2}\tan^2x + \ln|\sqrt{3}\tan x| + C.$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free