Chapter 1: Problem 13
Evaluate the following integrals: $$ \int \frac{x^{2} d x}{\sqrt{x^{2}-16}} $$
Chapter 1: Problem 13
Evaluate the following integrals: $$ \int \frac{x^{2} d x}{\sqrt{x^{2}-16}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right) \sqrt{\mathrm{x}}}\) (ii) \(\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+5 \mathrm{x}+6\right) \sqrt{\mathrm{x}+1}}\) (iii) \(\int \frac{d x}{\left(x^{2}-4\right) \sqrt{x+1}}\)
Evaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}} \frac{1-\sin \mathrm{x}}{1-\cos \mathrm{x}} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{2+\sin 2 x}{1+\cos 2 x} d x\) (iii) \(\int \frac{\mathrm{e}^{2 x}(\sin 4 x-2)}{1-\cos 4 x} d x\) (iv) \(\int \frac{\mathrm{e}^{\mathrm{x}}\left(1+\mathrm{x}+\mathrm{x}^{3}\right)}{\left(1+\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dx}\)
Evaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\mathrm{x}^{3}+1}\) (ii) \(\int \frac{\mathrm{d} \mathrm{x}}{\mathrm{x}\left(\mathrm{x}^{2}+1\right)}\) (iii) \(\int \frac{x+2}{\left(2 x^{2}+4 x+3\right)^{2}} d x\) (iv) \(\int \frac{1+x^{-2 / 3}}{1+x} d x\)
Evaluate the following integrals:(i) \(\int \frac{1}{(\cos x+2 \sin x)^{2}} d x\) (ii) \(\int \frac{\mathrm{dx}}{\left(\sin ^{2} \mathrm{x}+2 \cos ^{2} \mathrm{x}\right)^{2}} \mathrm{dx}\) (iii) \(\int \frac{\cos \theta \mathrm{d} \theta}{(5+4 \cos \theta)^{2}}\) (iv) \(\int \frac{d x}{\sin ^{6} x+\cos ^{6} x}\)
(i) There are two values of a for which \(\int \sqrt{1+a \sin ^{2} \theta} d \theta\) is elementary. What are they? (ii) From (1) deduce that there are two values of a for which \(\int \frac{\sqrt{1+a x^{2}}}{\sqrt{1-x^{2}}} \mathrm{dx}\) is elementary.
What do you think about this solution?
We value your feedback to improve our textbook solutions.