Chapter 1: Problem 12
If \(I_{n}=\int \frac{x^{n}}{\sqrt{x^{2}+a^{2}}} d x(n \geq 2)\), then show that \(I_{n}=\frac{x^{n-1} \sqrt{x^{2}+a^{2}}}{n}-\frac{a^{2}(n-1)}{n} I_{n-2}\)
Chapter 1: Problem 12
If \(I_{n}=\int \frac{x^{n}}{\sqrt{x^{2}+a^{2}}} d x(n \geq 2)\), then show that \(I_{n}=\frac{x^{n-1} \sqrt{x^{2}+a^{2}}}{n}-\frac{a^{2}(n-1)}{n} I_{n-2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$ \int \frac{\sqrt[3]{1+x^{3}}}{x^{2}} d x $$
Evaluate the following integrals: (i) \(\int \frac{\ln \cos x}{\cos ^{2} x} d x\) (ii) \(\int \sin x \cdot \ln \tan x d x\) (iii) \(\int \ln \left(1+2 x^{2}+x^{4}\right) d x\) (iv) \(\int \mathrm{e}^{\mathrm{x}}(1+\mathrm{x}) \ln \left(\mathrm{xe}^{\mathrm{x}}\right) \mathrm{dx}\)
\(\int\left(x^{3}-2 x^{2}+5\right) e^{3 x} d x\)
Evaluate the following integrals: $$ \int \frac{x^{3} d x}{\left(x^{2}-2 x+2\right)} $$
Evaluate the following integrals : $$ \int x^{5} \sqrt[3]{\left(1+x^{3}\right)^{2}} d x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.