Chapter 1: Problem 12
Evaluate the following integrals: $$ \int \frac{d x}{\left(x^{2}-2 x \cos \theta+1\right)} $$
Chapter 1: Problem 12
Evaluate the following integrals: $$ \int \frac{d x}{\left(x^{2}-2 x \cos \theta+1\right)} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeAssuming that \(\int\left(\mathrm{e}^{\mathrm{x}} / \mathrm{x}\right) \mathrm{d} \mathrm{x}\) is not elementary (a theorem of Liouville), prove that \(\int 1 / \ln \mathrm{x} \mathrm{dx}\) is not elementary.
(i) There are two values of a for which \(\int \sqrt{1+a \sin ^{2} \theta} d \theta\) is elementary. What are they? (ii) From (1) deduce that there are two values of a for which \(\int \frac{\sqrt{1+a x^{2}}}{\sqrt{1-x^{2}}} \mathrm{dx}\) is elementary.
Evaluate the following integrals: (i) \(\int \frac{d x}{\left(3+4 x^{2}\right)\left(4-3 x^{2}\right)^{1 / 2}}\) (ii) \(\int \frac{\mathrm{dx}}{\left(2 \mathrm{x}^{2}+1\right) \sqrt{1-\mathrm{x}^{2}}}\) (iii) \(\int \frac{\sqrt{1+x^{2}} d x}{2+x^{2}}\)
Evaluate the following integrals: (i) \(\int \frac{d x}{(1+x)^{3 / 2}+(1+x)^{1 / 2}}\) (ii) \(\int \frac{\mathrm{dx}}{\sqrt[4]{5-x}+\sqrt{5-x}}\) (iii) \(\int \frac{\mathrm{dx}}{\sqrt{(\mathrm{x}+2)}+\sqrt[4]{(\mathrm{x}+2)}}\) (iv) \(\int \frac{\sqrt{x+1}+2}{(x+1)^{2}-\sqrt{x+1}} d x\)
Evaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}(\sin \mathrm{x}-\cos \mathrm{x}) \mathrm{dx}\) (ii) \(\int \mathrm{e}^{\mathrm{x}}(\tan \mathrm{x}-\ln \cos x) \mathrm{dx}\) (iii) \(\int \mathrm{e}^{x} \sec x \cdot(1+\tan x) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.