Chapter 1: Problem 12
Evaluate the following integrals: (i) \(\int \frac{x d x}{a+b x} d x\) (ii) \(\int \frac{2 x-1}{x-2} d x\) (iii) \(\int \frac{x^{2}}{1+x^{2}} d x\) (iv) \(\int \frac{x^{4}}{1+x^{2}} d x\)
Chapter 1: Problem 12
Evaluate the following integrals: (i) \(\int \frac{x d x}{a+b x} d x\) (ii) \(\int \frac{2 x-1}{x-2} d x\) (iii) \(\int \frac{x^{2}}{1+x^{2}} d x\) (iv) \(\int \frac{x^{4}}{1+x^{2}} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{\left(x^{3}-x+2\right)}{\left(x^{2}+1\right)^{2}} d x\) (iii) \(\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}\) (iv) \(\int \mathrm{e}^{x}\left(\frac{1-x}{1+x}\right)^{2} d x\)
Evaluate the following integrals : $$\int \frac{d x}{x-\sqrt{x^{2}+2 x+4}}$$
Evaluate the following integrals: (i) \(\int \frac{x}{(x-1)\left(x^{2}+4\right)} d x\) (ii) \(\int \frac{x^{3} d x}{x^{4}+3 x^{2}+2}\) (iii) \(\int \frac{x^{3}-1}{x^{3}+x} d\) (iv) \(\int \frac{x^{4}-2 x^{3}+3 x^{2}-x+3}{x^{3}-2 x^{2}+3 x} d x\)
Evaluate the following integrals: (i) \(\int \ln \left(x+\sqrt{x^{2}+a^{2}}\right) d x\) (ii) \(\int \ln ^{2}\left(x+\sqrt{1+x^{2}}\right) d x\) (iii) \(\int x^{2} \ln \frac{1+x}{1-x} d x\) (iv) \(\int \frac{\ln x}{(x-1)^{3}} d x\)
Prove that, when \(x>a>b\), \(\int \frac{d x}{(x-a)^{2}(x-b)}\) \(=\frac{1}{(a-b)^{2}} \ell n \frac{x-b}{x-a}-\frac{1}{(a-b)(x-a)}+C\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.