Chapter 1: Problem 11
Evaluate the following integrals : $$ \int x^{34}\left(1+x^{78}\right)^{1 / 2} d x $$
Chapter 1: Problem 11
Evaluate the following integrals : $$ \int x^{34}\left(1+x^{78}\right)^{1 / 2} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{\ln \cos x}{\cos ^{2} x} d x\) (ii) \(\int \sin x \cdot \ln \tan x d x\) (iii) \(\int \ln \left(1+2 x^{2}+x^{4}\right) d x\) (iv) \(\int \mathrm{e}^{\mathrm{x}}(1+\mathrm{x}) \ln \left(\mathrm{xe}^{\mathrm{x}}\right) \mathrm{dx}\)
Evaluate the following integrals : $$ \int x^{5} \sqrt[3]{\left(1+x^{3}\right)^{2}} d x $$
Evaluate the following integrals: $$ \int \frac{x^{3} d x}{\left(x^{2}-2 x+2\right)} $$
Evaluate the following integrals: $$ \int \frac{x^{2}+2 x+3}{\sqrt{\left(x^{2}+x+1\right)}} d x $$
Evaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}}[\ln (\sec x+\tan \mathrm{x})+\sec \mathrm{x}] \mathrm{d} \mathrm{x}\) (ii) \(\int \mathrm{e}^{x}\left(\log x+\frac{1}{x^{2}}\right) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.