Chapter 1: Problem 10
\(\int \frac{\sqrt{x^{2}+1}}{x^{4}} \ln \left(1+\frac{1}{x^{2}}\right) d x\)
Chapter 1: Problem 10
\(\int \frac{\sqrt{x^{2}+1}}{x^{4}} \ln \left(1+\frac{1}{x^{2}}\right) d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$ \int x^{1 / 4}\left(2+3 x^{2}\right)^{3} d x $$
Assuming that \(\int\left(\mathrm{e}^{\mathrm{x}} / \mathrm{x}\right) \mathrm{d} \mathrm{x}\) is not elementary (a theorem of Liouville), prove that \(\int 1 / \ln \mathrm{x} \mathrm{dx}\) is not elementary.
Evaluate the following integrals: $$ \int \frac{x^{3}+1}{\sqrt{x^{2}+x}} d x $$
Three of these six antiderivatives are elementary. Find them. (A) \(\int x \cos x d x\) (B) \(\int \frac{\cos x}{x} d x\) (C) \(\int \frac{x d x}{\ln x}\) (D) \(\int \frac{\ln x^{2}}{x} d x\) (E) \(\int \sqrt{x-1} \sqrt{x} \sqrt{x+1} d x\) (F) \(\int \sqrt{x-1} \sqrt{x+1} x d x\)
Evaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}} \frac{1-\sin \mathrm{x}}{1-\cos \mathrm{x}} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{2+\sin 2 x}{1+\cos 2 x} d x\) (iii) \(\int \frac{\mathrm{e}^{2 x}(\sin 4 x-2)}{1-\cos 4 x} d x\) (iv) \(\int \frac{\mathrm{e}^{\mathrm{x}}\left(1+\mathrm{x}+\mathrm{x}^{3}\right)}{\left(1+\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dx}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.