Chapter 1: Problem 10
Evaluate the following integrals: $$ \int \sqrt{3 x^{2}-6 x+10} d x $$
Chapter 1: Problem 10
Evaluate the following integrals: $$ \int \sqrt{3 x^{2}-6 x+10} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}} \frac{1-\sin \mathrm{x}}{1-\cos \mathrm{x}} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{2+\sin 2 x}{1+\cos 2 x} d x\) (iii) \(\int \frac{\mathrm{e}^{2 x}(\sin 4 x-2)}{1-\cos 4 x} d x\) (iv) \(\int \frac{\mathrm{e}^{\mathrm{x}}\left(1+\mathrm{x}+\mathrm{x}^{3}\right)}{\left(1+\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dx}\)
Evaluate the following integrals: (i) \(\int \frac{d x}{(1+x)^{3 / 2}+(1+x)^{1 / 2}}\) (ii) \(\int \frac{\mathrm{dx}}{\sqrt[4]{5-x}+\sqrt{5-x}}\) (iii) \(\int \frac{\mathrm{dx}}{\sqrt{(\mathrm{x}+2)}+\sqrt[4]{(\mathrm{x}+2)}}\) (iv) \(\int \frac{\sqrt{x+1}+2}{(x+1)^{2}-\sqrt{x+1}} d x\)
Evaluate the following integrals: (i) \(\int x^{3} e^{x} d x\) (ii) \(\int x^{3} \cos x d x\) (iii) \(\int x^{3} / n^{2} x d x\)
From the fact that \(\int(\sin x) / x d x\) is not elementary, deduce that the following are not elementary : (A) \(\int\left(\cos ^{2} x\right) / x^{2} d x\) (B) \(\int\left(\sin ^{2} x\right) / x^{2} d x\) (C) \(\int \sin \mathrm{e}^{x} \mathrm{dx}\) (D) \(\int \cos x \ln x d x\)
Evaluate the following integrals: (i) \(\int \frac{\sqrt{x}+\sqrt[3]{x}}{\sqrt[4]{x^{5}}-\sqrt[6]{x^{7}}} d x\) (ii) \(\int \frac{x^{-2 / 3}}{2 x^{1 / 3}+(x-1)^{1 / 3}} d x\) (iii) \(\int \frac{d x}{x\left(2+\sqrt[3]{\frac{x-1}{x}}\right)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.