Chapter 1: Problem 1
Derive the reduction formula \(\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x\).
Chapter 1: Problem 1
Derive the reduction formula \(\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \tan ^{4} \theta \mathrm{d} \theta\) (ii) \(\int \frac{\mathrm{d} \theta}{\tan ^{5} \theta}\) (iii) \(\int \frac{\mathrm{d} \theta}{\sin ^{3} \theta}\) (iv) \(\int \cos ^{6} \theta \mathrm{d} \theta\)
Evaluate the following integrals : $$ \int x^{-1}\left(1+x^{1 / 3}\right)^{-3} d x $$
Evaluate the following integrals : $$\int \frac{\left(x+\sqrt{1+x^{2}}\right)^{15}}{\sqrt{1+x^{2}}} d x$$
Two of these three integrals are elementary; evaluate them (A) \(\int \sin ^{2} x d x\) (B) \(\int \sin \sqrt{x} d x\)\text { (C) } \int \sin x^{2} d x
Evaluate the following integrals : $$ \int \sqrt[3]{1+\sqrt[4]{x}} d x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.