Chapter 5: Problem 72
Let \(\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{4}=\mathrm{f}(\mathrm{n})\). Then \(\sum_{\mathrm{r}=1}^{\mathrm{n}}(2 \mathrm{r}-1)^{4}\) is equal to (a) \(\mathrm{f}(2 \mathrm{n})-16 \mathrm{f}(\mathrm{n})\) for all \(\mathrm{n} \in \mathrm{N}\) (b) \(\mathrm{f}(2 \mathrm{n})-16 \mathrm{f}\left(\frac{\mathrm{n}-1}{2}\right)\) when \(\mathrm{n}\) is odd (c) \(\mathrm{f}(\mathrm{n})-16 \mathrm{f}\left(\frac{\mathrm{n}}{2}\right)\) when \(\mathrm{n}\) is even (d) None of these
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.