Chapter 5: Problem 107
If \(|\mathrm{x}|<1\), then the sum of the infinite series \(\left[\mathrm{x}+\frac{1}{2}\right]+\left[\mathrm{x}^{2}+\mathrm{x} \frac{1}{2}+\left(\frac{1}{2}\right)^{2}\right]+\left[\mathrm{x}^{3}+\mathrm{x}^{2} \frac{1}{2}+\mathrm{x}\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}\right]+\ldots . \infty\) (a) \(\frac{1}{2}+x\) (b) \(\frac{2-x}{1-x}\) (c) \(\frac{1+x}{1-x}\) (d) \(\frac{2+x}{2-x}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.