Chapter 4: Problem 5
In any triangle \(\mathrm{ABC}\), prove that (i) \(\mathrm{R}=\frac{\mathrm{abc}}{4 \Delta}\) (ii) \(2 \mathrm{R}^{2} \sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}=\Delta\) (iii) \(\frac{1}{\mathrm{~s}-\mathrm{a}}+\frac{1}{\mathrm{~s}-\mathrm{b}}+\frac{1}{\mathrm{~s}-\mathrm{c}}-\frac{1}{\mathrm{~s}}=\frac{4 \mathrm{R}}{\Delta}\) (iv) \(\frac{1}{\mathrm{ab}}+\frac{1}{\mathrm{bc}}+\frac{1}{\mathrm{ca}}=\frac{1}{2 \mathrm{Rr}}\) (v) \(4\left(\frac{\mathrm{s}}{\mathrm{a}}-1\right)\left(\frac{\mathrm{s}}{\mathrm{b}}-1\right)\left(\frac{\mathrm{s}}{\mathrm{c}}-1\right)=\frac{\mathrm{r}}{\mathrm{R}}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.