Chapter 3: Problem 87
If \(\sec \theta=\frac{\mathrm{a}+\mathrm{b} \cos \phi}{\mathrm{a} \cos \phi+\mathrm{b}}\) then \(\tan \left(\frac{\theta}{2}\right)\) is (a) \(\left(\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}}\right) \tan \left(\frac{\phi}{2}\right)\) (b) \(\sqrt{\frac{a-b}{a+b}} \tan \left(\frac{\phi}{2}\right)\) (c) \(\frac{a b}{a-b} \tan \phi\) (d) \(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{ab}} \cot 2 \phi\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.