Chapter 3: Problem 68
The general solution of \(\sin 6 \theta+\sin 4 \theta=\sin 8 \theta+\sin 2 \theta\) is given by \(\theta\) equals (a) \(\frac{\mathrm{n} \pi}{5}\) or \(\frac{\mathrm{n} \pi}{2}\) or \(\mathrm{n} \pi\) (b) \(\mathrm{n} \pi\) or \(\frac{\mathrm{n} \pi}{2}\) or \(\frac{\mathrm{n} \pi}{3}\) (c) \(\mathrm{n} \pi\) or \(2 \mathrm{n} \pi\) or \(3 \mathrm{n} \pi\) (d) \(\frac{\mathrm{n} \pi}{2}\) or \(\frac{2}{5} \mathrm{n} \pi\) or \(3 \mathrm{n} \pi\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.