Chapter 3: Problem 3
Show that \(\tan 5 x-\tan 2 x-\tan 3 x=\tan 2 x \tan 3 x \tan 5 x\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 3: Problem 3
Show that \(\tan 5 x-\tan 2 x-\tan 3 x=\tan 2 x \tan 3 x \tan 5 x\)
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sqrt{2+\sqrt{2+\sqrt{2+2 \cos 8 \theta}}}\) is (a) \(2 \cos 2 \theta\) (b) \(2 \cos \theta\) (c) \(2 \cos 4 \theta\) (d) \(\cos 2 \theta\)
$$ \text { Find the sum of all the solutions of the equation } 7 \cos 2 \theta-\cos 4 \theta=6 \text { in the interval }(\pi, 45 \pi) \text { . } $$
$$ \text { Solve the equation } \cos x+\cos 3 x+\cos 5 x+\cos 7 x=0 $$
\(\sec x=a+\frac{1}{4 a}\) then \(\sec x+\tan x\) is: (a) \(\frac{2}{\mathrm{a}}\) (b) a (c) \(\frac{1}{\mathrm{a}}\) (d) \(\frac{1}{2 \mathrm{a}}\)
\(\sin \alpha+\sin 2 \alpha+\sin 3 \alpha+\ldots \ldots+\sin n \alpha\) is equal to (a) \(\frac{\sin \frac{\mathrm{n} \alpha}{2}}{\sin \frac{\alpha}{2}} \sin \left[\frac{\mathrm{n}+1}{2} \alpha\right]\) (b) \(\sin \frac{\mathrm{n} \alpha}{2} \sin \frac{(\mathrm{n}+1) \alpha}{2}\) (c) \(\cos \frac{\mathrm{n} \alpha}{2} \sin \frac{(\mathrm{n}+1) \alpha}{2}\) (d) \(\cos \frac{\mathrm{n} \alpha}{2} \sin \frac{(\mathrm{n}+1) \alpha}{2} / \sin \frac{\alpha}{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.