Chapter 3: Problem 29
Given that \(4^{\sec ^{2} \alpha+1} \mathrm{x}^{2}-8 \mathrm{x}+4 \tan ^{2} \beta-8 \tan \beta+5=0\) has real solutions, then (a) \(\alpha=\mathrm{n} \pi, \beta=\mathrm{n} \pi+\frac{\pi}{4}\) and \(\mathrm{x}=\pm 1\) (b) \(\alpha=\frac{\mathrm{n} \pi}{4}, \beta=\mathrm{n} \pi\) and \(\mathrm{x}=\frac{1}{4}\) (c) \(\alpha=\mathrm{n} \pi, \beta=\mathrm{n} \pi+\frac{\pi}{4}\) and \(\mathrm{x}=\frac{1}{4}\) (d) there is no real solution for \(x\) if either \(\alpha=R-\\{n \pi\\}\) or \(\beta=R-\\{n \pi+\pi / 4\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.