Chapter 3: Problem 2
Prove the following: (i) \(\sin \frac{7 \pi}{12} \cos \frac{\pi}{4}-\cos \frac{7 \pi}{12} \sin \frac{\pi}{4}=\frac{\sqrt{3}}{2}\) (ii) \(\mathrm{A}+\mathrm{B}=\frac{\pi}{4}\) if \(\tan \mathrm{A}=\frac{\mathrm{m}}{\mathrm{m}+1}, \tan \mathrm{B}=\frac{1}{2 \mathrm{~m}+1}\) (iii) \(\tan 70^{\circ}=\tan 20^{\circ}+2 \tan 50^{\circ}\) (iv) \(\frac{\cos 8^{\circ}-\sin 8^{\circ}}{\cos 8^{\circ}+\sin 8^{\circ}}=\tan 37^{\circ}\) (v) \(\cos ^{2} \frac{\pi}{8}+\cos ^{2} \frac{3 \pi}{8}+\cos ^{2} \frac{5 \pi}{8}+\cos ^{2} \frac{7 \pi}{8}=2\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.