Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Gegeben ist ein Dreieck \(\triangle \mathbf{0} A B\) mit den Punkten \(A=(1,4,2)\) und \(B=(2,5,1)\). 0 ist der Ursprung im \(\mathbb{R}^{3}\). Berechnen Sie mit den Mitteln der Vektorrechnung den Flächeninhalt des Dreiecks.

Short Answer

Expert verified
The area of \( \triangle OAB \) is \( \frac{3\sqrt{6}}{2} \).

Step by step solution

01

Vector Representation of Triangle Sides

The triangle is formed by vectors \( \overrightarrow{OA} \), \( \overrightarrow{OB} \), and \( \overrightarrow{AB} \). First, express vectors \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \). Since \( O \) is the origin, \( \overrightarrow{OA} = A - O = (1, 4, 2) \) and \( \overrightarrow{OB} = B - O = (2, 5, 1) \).
02

Find Cross Product of Vectors

To find the area of \( \triangle OAB \), calculate the magnitude of the cross product \( \overrightarrow{OA} \times \overrightarrow{OB} \). The cross product \( \overrightarrow{OA} \times \overrightarrow{OB} \) is calculated by taking the determinant of: \[\overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 1 & 4 & 2 \ 2 & 5 & 1 \end{vmatrix}\]= \( \mathbf{i}(4 \cdot 1 - 2 \cdot 5) - \mathbf{j}(1 \cdot 1 - 2 \cdot 2) + \mathbf{k}(1 \cdot 5 - 4 \cdot 2) \) = \(-6\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}\).
03

Calculate Magnitude of Cross Product

Now, find the magnitude of the vector \( \overrightarrow{OA} \times \overrightarrow{OB} = (-6, 3, -3) \). Use the formula for the magnitude: \[||\overrightarrow{OA} \times \overrightarrow{OB}|| = \sqrt{(-6)^2 + 3^2 + (-3)^2} = \sqrt{36 + 9 + 9} = \sqrt{54} = 3\sqrt{6}.\]
04

Calculate Area of Triangle

The area of the triangle \( \triangle OAB \) is half of the magnitude of the cross product. Thus, the area is given by: \[\text{Area} = \frac{1}{2} \times ||\overrightarrow{OA} \times \overrightarrow{OB}|| = \frac{1}{2} \times 3\sqrt{6} = \frac{3\sqrt{6}}{2}.\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Dreiecksfläche
The concept of "Dreiecksfläche," or the area of a triangle, can be understood by using vector calculus. In three-dimensional space, given a triangle with vertices at specific points, the challenge is to find the area. The given triangle has vertices at the origin and two other points, A and B, described by their coordinates.
To find the area of this triangle, one useful approach is applying the formula involving vectors. Triangles in space pose a slightly different challenge due to their three-dimensional nature. But with vectors, the area calculation becomes structured and formulaic.
By taking the cross product of two vectors lying in the plane of the triangle, we can find the vector perpendicular to the plane, then use its magnitude to calculate the area. The formula for the area becomes \[ \text{Area} = \frac{1}{2} \, \|\overrightarrow{u} \times \overrightarrow{v}\| \] where \( \overrightarrow{u} \) and \( \overrightarrow{v} \) are vectors that define the plane. This method is particularly useful for providing an accurate geometrical interpretation based on the vectors' properties.
Kreuzprodukt
The "Kreuzprodukt," or cross product, is a fundamental operation in vector algebra, especially when dealing with three-dimensional vectors. It is represented by the multiplication sign \( \times \). In our context of calculating a triangle's area in space, the cross product helps find a vector that is perpendicular to the plane defined by two vectors.
The formula to calculate the cross product of two vectors \( \overrightarrow{A} = (a_1, a_2, a_3) \) and \( \overrightarrow{B} = (b_1, b_2, b_3) \) is given by:
\[ \overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k} \]
This determinant style calculation provides us with a new vector whose direction is perpendicular to both original vectors, aligning with the right-hand rule of vector cross products. The length or magnitude of this vector is proportional to the sine of the angle between the original vectors, providing insightful information about the relationship and relative positioning of the vectors.
Vektormagnitude
Understanding "Vektormagnitude," or vector magnitude, is essential in many vector operations, particularly when dealing with physical properties such as length or displacement. A vector's magnitude is a scalar value that represents the length of the vector, irrespective of its direction. This is crucial when calculating properties like the area of a triangle.
The formula for the magnitude of a vector \( \overrightarrow{v} = (v_1, v_2, v_3) \) is:
\[ ||\overrightarrow{v}|| = \sqrt{v_1^2 + v_2^2 + v_3^2} \]
Here, each component of the vector is squared, summed, and square-rooted to give the overall length of the vector. When we calculate the magnitude of a cross product vector, it reflects how much the two original vectors "encompass" mutually in space, providing the necessary scalar for calculations like the area of a triangle. In practical terms, knowing a vector's magnitude aids in assessing and interpreting spatial relationships within vector fields.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Berechnen Sie den kürzesten Abstand des Punktes \(P^{\prime}=(1,4,8)\) von der Geraden \(g\), die durch die Gleichungen \(x+y+4 z=1\) und \(2 x+y+6 z=2\) beschrieben wird. Berechnen Sie den kürzesten Abstand des Punktes \(P^{\prime}\) von der Ebene \(E\), die durch die Gleichung \(x+y+z=2\) beschrieben wird. Berechnen Sie schließlich den Durchstoßpunkt der Geraden \(g\) durch die Ebene \(E .\)

Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix $$ D=\left(\begin{array}{rr} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right) $$ für beliebige Winkel \(\alpha \in[0,2 \pi]\).

Untersuchen Sie die linearen Gleichungssysteme $$ \left(\begin{array}{llll} 1 & 3 & 1 & 3 \\ 2 & 3 & 1 & 4 \\ 3 & 3 & 0 & 1 \end{array}\right)\left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right)=\left(\begin{array}{l} 5 \\ 1 \\ 2 \end{array}\right),\left(\begin{array}{llllll} 2 & 3 & 0 & 1 & 0 & 0 \\ 0 & 2 & 5 & 0 & 1 & 0 \\ 3 & 2 & 4 & 0 & 0 & 1 \end{array}\right)\left(\begin{array}{c} x \\ y \\ z \\ u \\ v \\ w \end{array}\right)=\left(\begin{array}{r} 8 \\ 10 \\ 15 \end{array}\right) $$ auf Lösbarkeit und ermitteln Sie gegebenenfalls alle Lösungen.

Berechnen Sie die Eigenwerte der Matrizen $$ A=\left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array}\right), B=\left(\begin{array}{rrr} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{array}\right), C=\left(\begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 4 & -6 & 4 \end{array}\right) $$ und berechnen Sie die dazugehörenden Eigenvektoren und im Falle des Defizits von Eigenvektoren die Hauptvektoren. Geben Sie jeweils die algebraischen und geometrischen Vielfachheiten an.

Weisen Sie nach, dass die Ortsvektoren der Punkte \(P_{1}=(0,3,4), P_{2}=(0,4,2)\) \(P_{3}=(2,0,1)\) eine Basis des \(\mathbb{R}^{3}\) bilden. Orthonormieren Sie diese Basis. Berechnen Sie schließlich die Koordinaten des Vektors \(\mathbf{x}=(1,1,1)^{T}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\) bezüglich der orthonormierten Ortsvektorbasis.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free