Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Gegeben ist die Funktion \(f(x)=\frac{4}{\pi}\left(\pi x-x^{2}\right), x \in[0, \pi]\). Setzen Sie die Funktion ungerade zu einer \(2 \pi\)-periodischen Funktion fort und berechnen Sie die FOURIER-Reihe der Funktion.

Short Answer

Expert verified
Extend the function to an odd, \(2\pi\)-periodic function and calculate its sine Fourier series.

Step by step solution

01

Understanding the Problem

We start with the function \( f(x) = \frac{4}{\pi}(\pi x - x^2) \), which is defined over the interval \([0, \pi]\). To find its Fourier series, we first need to extend it to a \(2\pi\)-periodic function by making it odd. This means defining it over the entire real line.
02

Extending the Function

To make \( f(x) \) an odd periodic function, we use: \( f(-x) = -f(x) \). So for \( x \in [-\pi, 0] \), we define \( f(x) = -\frac{4}{\pi}(\pi (-x) - (-x)^2) = \frac{4}{\pi}(\pi x - x^2) \). This ensures the function is odd in its extended form from \(-\pi\) to \(\pi\). Beyond \([-\pi, \pi]\), we repeat this pattern every \(2\pi\), making it \(2\pi\)-periodic.
03

Calculating the Fourier Coefficients

Since the function is odd and periodic, only the sine terms will appear in its Fourier series. The Fourier sine series is:\[\sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)\]where \(L = \pi\). The coefficients are given by:\[b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin\left(\frac{n\pi x}{\pi}\right) \, dx\]
04

Calculating Specific Coefficient

Substitute \(f(x) = \frac{4}{\pi}(\pi x - x^2)\) into the integral:\[b_n = \frac{2}{\pi} \int_0^{\pi} \left(\frac{4}{\pi}(\pi x - x^2)\right) \sin(nx) \, dx\] Simplify and compute this integral for each \(n\):\[b_n = \frac{8}{\pi^2} \int_0^{\pi} (\pi x - x^2) \sin(nx) \, dx\] This integral requires integration by parts or computational tools to solve, giving values for each \(n\).
05

Writing the Fourier Series

Using the calculated \(b_n\), the Fourier series is written as:\[f(x) \sim \sum_{n=1}^{\infty} b_n \sin(nx)\]where \( b_n \) are as calculated in Step 4 for each \(n\). This represents the \(2\pi\)-periodic odd extension of the original function over the entire real line.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Fourier coefficients
In the study of Fourier series, Fourier coefficients are essential elements that help us express a function as a sum of sine and cosine terms. They provide the weights for these terms, determining how much each sine and cosine contributes to the overall function. For a given function, calculating its Fourier coefficients allows us to approximate or reconstruct the function using these trigonometric series.

For our exercise, we are dealing with an odd function that, when extended, will use only sine terms in its Fourier series. The formula for the coefficients in such a series, known as the sine coefficients, is
  • \(b_n = \frac{2}{T} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx\)
where \(n\) is a positive integer, \(T\) is the period, and \(L\) is half the period.

This integral tells us how to project our original function onto the sine basis functions, effectively capturing the function's behavior using sine waves that persist throughout the interval. Ensure to perform correct integration to find each coefficient, which builds up the accuracy of the resulting Fourier series.
odd function extension
An odd function extension involves extending a given function such that it satisfies the condition of being odd. This means that the function must relate to its negative, expressed mathematically as \(f(-x) = -f(x)\).

For our particular problem, we are tasked with taking the function \(f(x) = \frac{4}{\pi}(\pi x - x^2)\) and extending it outside the interval \([0, \pi]\) to make a complete \(2\pi\)-periodic odd function.
  • This extension results in the function being defined symmetrically about the origin.
  • The critical step is ensuring the function behaves correctly in the \([-\pi, 0]\) interval, maintaining the odd symmetry.
  • This symmetry ensures that when we apply the Fourier series, only sine terms appear because sine functions themselves are odd, further simplifying the series.
Properly extending the function to an odd and \(2\pi\)-periodic one is crucial for accurately developing the Fourier series that correctly represents the original function over any real interval.
periodic functions
Periodic functions are functions that repeat their values at regular intervals, known as periods. A function \(f(x)\) is said to be periodic with period \(T\) if for all values \(x\), \(f(x + T) = f(x)\).

In our context, making the function \(2\pi\)-periodic means adjusting its behavior to repeat every \(2\pi\), ensuring that it continues smoothly without jumps or breaks across the entire real line.
  • Periodic functions are central to the application of Fourier series because they allow complex waveforms to be expressed as a sum of simple sine and cosine waves, which are inherently periodic themselves.
  • Maintaining the periodicity through precise extension and calculation ensures an accurate representation of the function across all intervals.
By achieving a periodic extension of \(2\pi\), the function seamlessly transforms into a format suitable for analysis and practical applications using Fourier series methodology.
integration by parts
Integration by parts is a powerful technique used to solve integrals where traditional methods would be challenging. It is based on the product rule for differentiation and is used especially when dealing with products of functions.

The rule can be expressed as:
  • \(\int u \, dv = uv - \int v \, du\)
where \(u\) and \(dv\) are chosen parts of the integrand. Identifying the right pieces might take a bit of practice but is essential for simplifying the integral into something more manageable.

In our exercise, calculating the coefficients in the Fourier series involves integrating terms like \((\pi x - x^2) \sin(nx)\). The choice of \(u\) often aligns with a polynomial part, and \(dv\) corresponds to the trigonometric part. Following this approach provides a way to evaluate complex integrals, central to finding the exact Fourier coefficients.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Bestimmen Sie das komplexe FOURIER-Polynom \(n\)-ter Ordnung der Funktion \(f\), die definiert ist durch \(f(x)=e^{2 x}\) für \(0 \leq x \leq 1\) mit \(f(x)=f(x+2)\) und \(f(x)=f(-x)\). (b) Wie lautet die zugehörige Darstellung des FOURIER-Polynoms \(n\)-ter Ordnung im Reellen?.

Berechnen Sie den Wert der Reihe \(\sum_{k=3}^{\infty}\left(\frac{3}{4}\right)^{k}\).

(a) Definieren Sie eine ungerade Fortsetzung der auf dem Intervall \([0,1]\) definierten Funktion \(f(x)=x(1-x)\) zu einer 2-periodischen Funktion, (b) Skizzieren Sie den Graphen der 2-periodischen Funktion. (c) Bestimmen Sie eine FOURIER-Reihe zur Darstellung der auf \([0,1]\) definierten Funktion \(f(x)=x(1-x)\).

Berechnen Sie die FOURIER-Reihe der ungeraden \(2 \pi\)-periodischen Funktion $$ f(x)=\left\\{\begin{array}{lll} y=x & \text { für } & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ y=\pi-x & \text { für } & \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2} \end{array}\right. $$ Nutzen Sie das Ergebnis und die PARSEVALsche Gleichung zur Berechnung des Wertes der Reihen $$ \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \text { bzw. } \quad \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{4}} $$

Zeigen Sie unter Nutzung der arctan-Reihe die Gültigkeit der Beziehung $$ \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{2 k+1} $$ und geben Sie eine Zahl \(n \in \mathbb{N}\) an, so dass der Fehler bei der Berechnung von \(\frac{\pi}{4}\) durch \(\sum_{k=0}^{n}(-1)^{k} \frac{1}{2 k+1}\) kleiner als \(10^{-5}\) wird.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free