Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sei \(F\) eine Abbildung von \(C([a, b])\) nach \(C([a, b])\) und zwar konkret definiert durch $$ x \mapsto F x, \quad(F x)(t)=\int_{a}^{b} k(t, s) f(s, x(s)) d s $$ wobei \(k:[a, b] \times[a, b] \rightarrow \mathbb{R}\) stetig sein soll, und \(f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}\) ebenfalls stetig ist und im zweiten Argument stetig differenzierbar sein soll. Zeigen Sie unter Nutzung des Mittelwertsatzes der Differentialrechnung, dass \(F\) FRÉCHET- differenzierbar mit der FRÉCHET-Ableitung $$ \left(F^{\prime}(x) h\right)(t)=\int_{a}^{b} k(t, s) \frac{\partial f}{\partial x}(s, x(s)) h(s) d s $$ ist.

Short Answer

Expert verified
\( F(x) \) is Fréchet differentiable with derivative \( F'(x)h = \int_{a}^{b} k(t, s) \frac{\partial f}{\partial x}(s, x(s)) h(s) \, ds \).

Step by step solution

01

Understand the Problem

We need to prove that the transformation \( F \) from \( C([a, b]) \) to \( C([a, b]) \) is Fréchet differentiable and find its derivative. The mapping is defined by \( (F x)(t) = \int_{a}^{b} k(t, s) f(s, x(s)) \, ds \), where \( k \) and \( f \) are continuous functions, and \( f \) is continuously differentiable with respect to its second argument.
02

Recall Fréchet Derivative Definition

The Fréchet derivative of a function \( F \) at a point \( x \) in a Banach space is a bounded linear operator \( F'(x) \), such that for \( h \) in the space, \( F(x+h)-F(x)-F'(x)h=o(\|h\|) \). This essentially means the error \( F(x+h) - F(x) - F'(x)h \) becomes negligibly small compared to \( \|h\| \) as \( \|h\| \to 0 \).
03

Apply Mean Value Theorem for Function \( f \)

For small perturbations \( h(s) \, \in \, C([a, b]) \), using the Mean Value Theorem for functions, we have:\[ f(s, x(s) + h(s)) - f(s, x(s)) = \frac{\partial f}{\partial x} (s, \xi(s)) h(s) \] for some \( \xi(s) \) between \( x(s) \) and \( x(s) + h(s) \). This helps in approximating \( f(s, x(s) + h(s)) \) around \( x(s) \).
04

Differentiate the Integral

By substituting the result from the Mean Value Theorem in our integral, we recognize that:\[(F(x+h))(t) - (F(x))(t) = \int_{a}^{b} k(t, s) \left( f(s, x(s) + h(s)) - f(s, x(s)) \right) \, ds \= \int_{a}^{b} k(t, s) \frac{\partial f}{\partial x}(s, \xi(s)) h(s) \, ds.\] By continuity, \( \xi(s) \to x(s) \) as \( h(s) \to 0 \).
05

Establish Fréchet Derivative Expression

Rearranging the differential terms yields:\[(F(x+h))(t) - (F(x))(t) = \int_{a}^{b} k(t, s) \frac{\partial f}{\partial x}(s, x(s)) h(s) \, ds + \epsilon(h, x)\] where \( \epsilon(h, x) = \int_{a}^{b} k(t, s) ( \frac{\partial f}{\partial x}(s, \xi(s)) - \frac{\partial f}{\partial x}(s, x(s)) ) h(s) \, ds \) tends to 0 as \( \|h\| \to 0 \). Thus, \( F'(x)h = \int_{a}^{b} k(t, s) \frac{\partial f}{\partial x}(s, x(s)) h(s) \, ds \).
06

Verify the Fréchet Differentiability Criteria

It remains to show that \( \epsilon(h, x) = o(\|h\|) \). Since \( \frac{\partial f}{\partial x} \) is continuous, the difference \( \frac{\partial f}{\partial x}(s, \xi(s)) - \frac{\partial f}{\partial x}(s, x(s)) \to 0 \) uniformly, ensuring \( \epsilon(h,x) \) is a higher order term compared to \( \|h\| \), thus proving the Fréchet differentiability.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Mean Value Theorem
The Mean Value Theorem is a fundamental concept in calculus that helps us approximate changes in continuous and differentiable functions. It effectively states that for a real-valued function that is continuous over a closed interval \[a, b\] and differentiable over the open interval \(a, b\), there exists at least one point \(c\) in the interval where the function's instantaneous rate of change (i.e., derivative) equals the average rate of change over the interval. Essentially, it guarantees that if you chart the function, there's somewhere along the curve where the tangent has the same slope as the line connecting the endpoints of the interval.

This theorem is critical in differential calculus because it often provides the means to estimate the amount by which a function changes over an interval. In the context of proving Fréchet differentiability, the Mean Value Theorem helps us relate the difference in function values to derivatives, leading to an integral form that approximates the original function. This understanding is key to managing transformations in differential calculus.
Banach Space
Banach spaces are complete normed vector spaces. This means every Cauchy sequence in a Banach space converges within the space. They play an essential role in functional analysis, a branch of mathematics that deals with functions and their generalizations. In simpler terms, a Banach space provides a structured framework where you can perform limit operations and analyze convergence behaviors.

One important feature of Banach spaces is the ability to handle infinite dimensional settings, such as function spaces like \({C([a, b])}\), the space of continuous functions on a closed interval. This space is central to the original problem, as it allows analysis of integral transformations and differentiability in a comprehensive and mathematically rigorous manner. The use of Banach spaces simplifies many complex analytical problems by ensuring that limits and functions behave predictably in all cases addressed within this space.
Differential Calculus
Differential calculus is concerned primarily with studying how functions change. It focuses on the derivative, a powerful tool that describes the rate of change of a function at any given point. The derivative is fundamental in defining concepts like tangents, velocities, and accelerations, which have broad applications from physics to engineering.

In the context of the original problem, differential calculus is employed to derive the Fréchet derivative of the transformation \(F\). Here, the challenge lies not only in finding the derivative but in proving its existence as the error term tends to zero compared to perturbations in function space. The solution utilizes differential calculus techniques to show that the derivative provides a valid linear approximation of \(F\), affirming the core principle that at very small scales, functions appear linear.
Integral Transformations
Integral transformations involve converting a function into another function via integration, often smoothing or analyzing its features in a new form. They are integral to many branches of mathematics and physics because of their ability to simplify complex problems and provide new perspectives on function behavior.

In the given exercise, an integral transformation is central to defining the function \(F\) that we need to differentiate. The expression \( (F x)(t) = \int_{a}^{b} k(t, s) f(s, x(s)) \, ds \) shows how a continuous input function \(x(s)\) can be mapped into another through a kernel \(k(t, s)\), making it easier to analyze differentiability through such transformations. By substituting results from differential calculus into this integral form, the problem highlights how transformations integrate smoothly with other mathematical operations, facilitating complex analyses like establishing differentiability or solving differential equations.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Für einen zufälligen Vektor \((X, Y)\) wurden 11 Werte \(X=x_{i}\) eingestellt und dazu die Werte \(y_{i}\) der bedingten Zufallsgrößen \(\left(Y \mid X=x_{i}\right)\) gemessen: \begin{tabular}{cccccccccccc} \hline\(i\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline\(x_{i}\) & \(-2\) & \(-1\) & \(-1\) & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 \\ \hline\(y_{i}\) & \(-0,3\) & 0,8 & 1,2 & 1,9 & 3,0 & 4,5 & 3,9 & 5,4 & 6,1 & 6,2 & 6,8 \\ \hline \end{tabular} \((Y \mid X=x)\) sei vom Typ \(N\left(\beta_{0}+\beta_{1} x, \sigma\right)\) (a) Man bestimme mittels der angegebenen Stichprobe Schätzwerte für die \(\mathrm{Re}\) gressionskoeffizienten \(\beta_{0}, \beta_{1}\) sowie für \(\sigma^{2}\). (b) Man gebe Konfidenzintervalle für \(\beta_{0}, \beta_{1}\) zum Konfidenzniveau \(\alpha=0,05\) an. (c) Man prüfe die Hypothesen \((\alpha=0,05)\) \(H_{0}: \beta_{0}=2\) gegen \(\quad H_{1}: \beta_{0} \neq 2\) und \(H_{0}: \beta_{1}=1\) gegen \(\quad H_{1}: \beta_{0} \neq 1\)

Sei \(F\) eine Abbildung vom Raum der auf \([a, b]\) stetigen reellwertigen Funktionen \(C([a, b])\) (ausgestattet mit der Maximum-Norm) nach \(\mathbb{R}\) gegeben durch $$ y \mapsto F y, \quad F y=\int_{a}^{b} y(x) d x $$

Die Physiker RUTHERFORD und GEIGER untersuchten die Emission von \(\alpha\) Teilchen aus einer radioaktiven Substanz. Die Anzahl \(X\) der \(\alpha\)-Teilchen, die in einem bestimmten Zeitintervall emittiert werden, ist eine diskrete Zufallsgröße. RUTHERFORD und GEIGER stellten fest, dass die Zufallsgröße \(X\) für Zeitintervalle der Länge 7,5 Sekunden die 11 Werte \(0,1, \ldots, 10\) annehmen kann. Es wurde eine Stichprobe vom Umfang \(n=2608\) untersucht, d.h. es wurden die Werte von \(X\) in 26087,5 -Sekunden-Intervallen experimentell ermittelt. Die Anzahl der Zeitintervalle, in denen \(X\) den Wert \(i(i=0,1, \ldots, 10)\) angenommen hat, sei \(n_{i} .\) Es ist \(\sum_{i=0}^{10} n_{i}=n=2608\). \begin{tabular}{lcccccccccccc} \hline\(i\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\ \hline\(n_{i}\) & 57 & 203 & 383 & 525 & 532 & 408 & 273 & 139 & 45 & 27 & 16 & \(n=2608\) \\ \hline \end{tabular} (a) Man bestimme die empirische Häufigkeitsverteilung \(\left(i, \frac{n_{i}}{n}\right)\). (b) Man berechne die Summenhäufigkeiten \(s_{i}\) und die empirische Wahrscheinlichkeitsverteilungsfunktion \(f(x)\) (Schätzung für die Wahrscheinlichkeitsverteilungsfunktion \(P\\{X

\(X\) sei eine Zufallsgröße vom Typ \(N(\mu, 1) \cdot\left[\gamma_{u}, \gamma_{o}\right]\) sei ein konkretes \(100(1-\alpha) \%\) Konfidenzintervall für den Erwartungswert \(\mu ; L=\gamma_{o}-\gamma_{u}\). (a) Beweisen Sie, dass die Sicherheitswahrscheinlichkeit \(1-\alpha\) wächst, wenn man den Stichprobenumfang verdoppelt, die Intervall-Länge \(L\) aber beibehält. Auf welchen Wert steigt speziell die Sicherheitswahrscheinlichkeit \(1-\alpha=0,90\) bei Verdoppelung des Stichprobenumfangs? (b) Um wieviel muss man den Stichprobenumfang erhöhen, wenn bei konstanter Sicherheitswahrscheinlichkeit die Länge \(L\) halbiert werden soll?

Berechnen Sie die FRÉCHET-Ableitung des Funktionals $$ f(u)=\int_{0}^{\frac{\pi}{2}} \cos u(\phi) d \phi $$ wobei \(f\) auf dem BANACH-Raum der stetigen Funktionen \(u(\phi)\) über dem Intervall \(\left[0, \frac{\pi}{2}\right]\) mit der Maximum-Norm definiert ist.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free