Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(X\) sei eine Zufallsgröße vom Typ \(N(\mu, 1) \cdot\left[\gamma_{u}, \gamma_{o}\right]\) sei ein konkretes \(100(1-\alpha) \%\) Konfidenzintervall für den Erwartungswert \(\mu ; L=\gamma_{o}-\gamma_{u}\). (a) Beweisen Sie, dass die Sicherheitswahrscheinlichkeit \(1-\alpha\) wächst, wenn man den Stichprobenumfang verdoppelt, die Intervall-Länge \(L\) aber beibehält. Auf welchen Wert steigt speziell die Sicherheitswahrscheinlichkeit \(1-\alpha=0,90\) bei Verdoppelung des Stichprobenumfangs? (b) Um wieviel muss man den Stichprobenumfang erhöhen, wenn bei konstanter Sicherheitswahrscheinlichkeit die Länge \(L\) halbiert werden soll?

Short Answer

Expert verified
(a) The confidence level increases to 95% with doubled sample size. (b) The sample size must increase fourfold to halve \(L\).

Step by step solution

01

Understand the Problem

The problem involves a random variable \(X\) with a normal distribution \(N(\mu, 1)\) and a given confidence interval \([\gamma_u, \gamma_o]\). You need to prove how the confidence level changes when the sample size is doubled while keeping the interval length \(L\) constant. Additionally, determine how much the sample size must increase to halve \(L\) with a constant confidence level.
02

Confidence Interval Formula

For a normal distribution with known variance, the \((1-\alpha)\times 100\%\) confidence interval for the mean \(\mu\) is given by \(\bar{x} \pm z_{1-\alpha/2} \times \frac{\sigma}{\sqrt{n}}\). Here, \(z_{1-\alpha/2}\) is the z-score corresponding to the confidence level, \(\sigma=1\) is the standard deviation, and \(n\) is the sample size.
03

Double the Sample Size

Increasing the sample size from \(n\) to \(2n\) reduces the standard error to \(\frac{1}{\sqrt{2}} \times \frac{\sigma}{\sqrt{n}}\). For a fixed interval length \(L\), this wider interval implies an increase in the z-score \(z'_{1-\alpha'/2}\), hence increasing the confidence level \(1-\alpha\).
04

Calculate Updated Confidence Level

To find the new confidence level when \(1-\alpha=0.90\), identify the z-score that corresponds for this confidence level initially, say \(z_{0.95}\) for a bilateral test. By doubling the sample size, adjust \(z'\) for the interval to remain \(L\): \(z'_{0.975} \approx 1.96\). The new confidence level will be higher than 90% based on the updated z-score possibly to a typical level like 95%.
05

Change in Sample Size to Halve Length

To achieve an interval of length \(\frac{L}{2}\) while maintaining the same confidence level, notice that the interval length is proportional to \(\frac{1}{\sqrt{n}}\). Halving \(L\) requires \(\frac{L}{2} = z_{0.95} \times \frac{1}{\sqrt{n'}}\). To solve for \(n'\), set it equal to \(4n\) since \(\frac{1}{2}\) is the square root of \(\frac{1}{n}\) requiring four times the original sample size.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Normal Distribution
The concept of normal distribution is central to statistics and vital in calculating confidence intervals. It is often represented as a bell-shaped curve, symmetric around the mean.
This distribution tells us how data values are expected to spread around the mean in the universe of possibilities.
  • The mean (\( \mu \)) is the center of the distribution.
  • The standard deviation (\( \sigma \)) indicates how much variation there is from the mean. In the problem, this value is 1, meaning the data points are closely centered around the mean.
The normal distribution is useful because it allows for straightforward calculations of probabilities and ranges within data sets, integral for deriving confidence intervals and interpreting statistical data. This concept is especially meaningful in large sample sizes as more data points align to the distribution pattern.
Sample Size
Sample size (\( n \)) is a crucial factor in determining the precision of statistical estimates like confidence intervals. Larger sample sizes narrow the confidence interval, providing higher accuracy about the population parameter.
This is because sample size inversely affects the standard error, which is the measure of variance in the data:
\[ \text{Standard Error} = \frac{\sigma}{\sqrt{n}} \]As you increase \( n \), the standard error decreases. Doubling the sample size results in a reduction of the standard error by a factor of \( \frac{1}{\sqrt{2}} \), which tightens the interval, increasing confidence levels.
Furthermore, changes to the sample size are necessary to adjust the confidence interval length and desired confidence level. In practice, determining the appropriate sample size requires balancing precision requirements with resource availability.
Statistical Significance
Statistical significance indicates whether a result is likely caused by something other than random chance. It is closely tied to the chosen confidence level \( 1-\alpha \).
A higher confidence level implies a higher degree of reliability that the parameter is accurately estimated.
  • The confidence level reflects the probability that the interval so calculated will contain the true parameter value.
  • By default, conventional significance levels are set at 5% (or less), resulting in a confidence level of 95% or more, meaning that in 95% of cases, the true parameter will fall within the interval.
For instance, increasing the sample size increases the confidence level from 90% to 95% because the wider confidence interval captures the actual population parameter more effectively, reducing the potential error.
Z-Score
A z-score is a statistical measurement that depicts the number of standard deviations a data point is from the mean. In the context of confidence intervals, the z-score determines the margin of error.
  • A higher z-score indicates a broader margin, suited for higher confidence levels.
  • Lower z-scores result in narrower margins, aligning with lower confidence levels.
The z-score is crucial for calculating confidence intervals for normally distributed data.
For a 95% confidence interval, a common z-score is 1.96, meaning the interval includes data that falls within 1.96 standard deviations from the mean on either side.
Adjusting the z-score according to exact confidence level requirements is necessary when modifying sample size either for tightening or relaxing the interval.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Bestimmen Sie stationäre Punkte \(x(t)\) mit \(x(0)=1\) und \(x(2)=2\) des Funktionals $$ J(x)=\int_{0}^{2}\left[\frac{1}{2} \dot{x}^{2}+x \dot{x}+\dot{x}\right] d t $$

Berechnen Sie die FRÉCHET-Ableitung des Funktionals $$ f(u)=\int_{0}^{\frac{\pi}{2}} \cos u(\phi) d \phi $$ wobei \(f\) auf dem BANACH-Raum der stetigen Funktionen \(u(\phi)\) über dem Intervall \(\left[0, \frac{\pi}{2}\right]\) mit der Maximum-Norm definiert ist.

Bestimmen Sie stationäre Punkte \(x(t)\) des Funktionals $$ J(x)=\int_{0}^{T} \sqrt{1+\dot{x}^{2}} d t $$ wobei \(x(0)=0\) und für das Intervallende \(T\) die Bedingung \(x(T)=r(T)=\frac{1}{T^{2}}\) gelten sollen.

Sei \(F\) eine Abbildung vom Raum der auf \([a, b]\) stetigen reellwertigen Funktionen \(C([a, b])\) (ausgestattet mit der Maximum-Norm) nach \(\mathbb{R}\) gegeben durch $$ y \mapsto F y, \quad F y=\int_{a}^{b} y(x) d x $$

Für einen zufälligen Vektor \((X, Y)\) wurden 11 Werte \(X=x_{i}\) eingestellt und dazu die Werte \(y_{i}\) der bedingten Zufallsgrößen \(\left(Y \mid X=x_{i}\right)\) gemessen: \begin{tabular}{cccccccccccc} \hline\(i\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline\(x_{i}\) & \(-2\) & \(-1\) & \(-1\) & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 \\ \hline\(y_{i}\) & \(-0,3\) & 0,8 & 1,2 & 1,9 & 3,0 & 4,5 & 3,9 & 5,4 & 6,1 & 6,2 & 6,8 \\ \hline \end{tabular} \((Y \mid X=x)\) sei vom Typ \(N\left(\beta_{0}+\beta_{1} x, \sigma\right)\) (a) Man bestimme mittels der angegebenen Stichprobe Schätzwerte für die \(\mathrm{Re}\) gressionskoeffizienten \(\beta_{0}, \beta_{1}\) sowie für \(\sigma^{2}\). (b) Man gebe Konfidenzintervalle für \(\beta_{0}, \beta_{1}\) zum Konfidenzniveau \(\alpha=0,05\) an. (c) Man prüfe die Hypothesen \((\alpha=0,05)\) \(H_{0}: \beta_{0}=2\) gegen \(\quad H_{1}: \beta_{0} \neq 2\) und \(H_{0}: \beta_{1}=1\) gegen \(\quad H_{1}: \beta_{0} \neq 1\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free