Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Bestimmen Sie stationäre Punkte \(x(t)\) des Funktionals $$ J(x)=\int_{0}^{T} \sqrt{1+\dot{x}^{2}} d t $$ wobei \(x(0)=0\) und für das Intervallende \(T\) die Bedingung \(x(T)=r(T)=\frac{1}{T^{2}}\) gelten sollen.

Short Answer

Expert verified
The stationary path is \( x(t) = \frac{t}{T^3}\sqrt{1-(\frac{1}{T^2})^2} \).

Step by step solution

01

Understanding the Problem Statement

We need to find stationary points of the given functional \( J(x) = \int_{0}^{T} \sqrt{1 + \dot{x}^{2}} \, dt \). The boundary conditions given are \( x(0) = 0 \) and \( x(T) = \frac{1}{T^{2}} \). A stationary point is found by determining the path that minimizes or makes stationary this functional.
02

Setting Up the Euler-Lagrange Equation

The functional involves \( \dot{x}(t) \), so we use the Euler-Lagrange equation, which for a functional \( J(x) = \int L(x, \dot{x}, t) \, dt \) is: \( \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x} \). In this case, the Lagrangian is \( L = \sqrt{1 + \dot{x}^{2}} \).
03

Calculating Partial Derivatives of the Lagrangian

Compute the partial derivatives: \( \frac{\partial L}{\partial \dot{x}} = \frac{\dot{x}}{\sqrt{1 + \dot{x}^{2}}} \) and \( \frac{\partial L}{\partial x} = 0 \), since \( L \) doesn't explicitly depend on \( x \).
04

Applying the Euler-Lagrange Equation

Since the equation is \( \frac{d}{dt}\left(\frac{\dot{x}}{\sqrt{1 + \dot{x}^{2}}}\right) = 0 \), this implies that \( \frac{\dot{x}}{\sqrt{1 + \dot{x}^{2}}} = C \), where \( C \) is a constant. This implies \( \dot{x} = \frac{C}{\sqrt{1-C^2}} \), a constant velocity.
05

Evaluating the Constants Using Boundary Conditions

From \( \dot{x} = \frac{C}{\sqrt{1-C^2}} \), integrate to get \( x(t) = \frac{C}{\sqrt{1-C^2}} t + C_1 \). Using \( x(0) = 0 \), we find \( C_1 = 0 \). From \( x(T) = \frac{1}{T^2} \), solve \( \frac{CT}{\sqrt{1-C^2}} = \frac{1}{T^2} \) for \( C \).
06

Solving for Constant C and Final Expression

Solve the equation \( CT = \frac{1}{T^2}\sqrt{1-C^2} \). After algebraic manipulation and squaring both sides, determine the value of \( C \). Conclude with the solution \( x(t) = \frac{t}{T^3}\sqrt{1-(\frac{1}{T^2})^2} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Euler-Lagrange Equation
The Euler-Lagrange equation is a fundamental principle in the calculus of variations used to find the stationary points of functionals. A functional is an expression that depends on a function and its derivatives. Here, our goal is to determine what path minimizes or makes stationary the given functional.
This problem specifically involves the integral \[ J(x) = \int_{0}^{T} \sqrt{1 + \dot{x}^{2}} \, dt \] where \( \dot{x} \) represents the derivative of \( x(t) \) with respect to time.

To apply the Euler-Lagrange equation, we consider a Lagrangian, labeled \( L \), which combines \( x \), \( \dot{x} \), and any explicit dependence on \( t \). For this problem, the Lagrangian is \( L = \sqrt{1 + \dot{x}^{2}} \), noting there is no explicit dependence on \( x \) or \( t \). The Euler-Lagrange equation is written as: \[ \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x} \] In our case, the partial derivative \( \frac{\partial L}{\partial x} \) is zero since \( L \) does not contain \( x \). Thus, simplifying the equation, we're left with:
  • \( \frac{d}{dt} \left( \frac{\dot{x}}{\sqrt{1 + \dot{x}^{2}}} \right) = 0 \)
This means the expression inside the time derivative is constant, and so the optimal path \( x(t) \) has a constant velocity.
Stationary Points
Finding stationary points involves identifying the paths that either minimize or make a functional stationary, evident in calculus of variations problems. In our exercise:
\[ J(x) = \int_{0}^{T} \sqrt{1 + \dot{x}^{2}} \, dt \] requires determining such paths given boundary conditions \( x(0) = 0 \) and \( x(T) = \frac{1}{T^2} \).

Stationary points aren't necessarily minimums or maximums, but they're the points where the first derivative of the functional's value with respect to functions vanishes.
In our case, the stationarity condition derived from the Euler-Lagrange equation implies that the expression \( \frac{\dot{x}}{\sqrt{1 + \dot{x}^{2}}} \) is constant.
  • This leads to a constant velocity solution \( \dot{x} = \frac{C}{\sqrt{1-C^2}} \).
  • Integrating this expression gives \( x(t) = \frac{C}{\sqrt{1-C^2}} t + C_1 \).
Using given boundary conditions, the solution is refined to match these constraints, ensuring it accurately represents a stationary path for the functional.
Functional Analysis
Functional analysis comes into play when handling functionals, like \( J(x) = \int_{0}^{T} \sqrt{1 + \dot{x}^{2}} \, dt \), integrating both calculus and real analysis principles. This method provides a comprehensive view for understanding variations of functions over a specified range, using tools from the calculus of variations.

Functionals map functions to real numbers, capturing potential energy paths, which in turn are comparable using techniques from functional analysis.
  • This equips mathematicians with the ability to study functions within infinite-dimensional spaces.
  • In such scenarios, it's crucial to identify conditions under which the functional is stationary, using boundary conditions effectively as constraints.
In this specific exercise, analysis turned towards satisfying constraints such as \( x(0)=0 \) and \( x(T)=\frac{1}{T^{2}} \). Adjustments are made in the expression derived from the constant found in the Euler-Lagrange application.
Simply put, functional analysis provides insight and methods necessary for addressing complex problems seen in calculus of variations, helping translate these into practical solutions. By thorough analysis, paths are distinguished as viable solutions within given parameters.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Für einen zufälligen Vektor \((X, Y)\) wurden 11 Werte \(X=x_{i}\) eingestellt und dazu die Werte \(y_{i}\) der bedingten Zufallsgrößen \(\left(Y \mid X=x_{i}\right)\) gemessen: \begin{tabular}{cccccccccccc} \hline\(i\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline\(x_{i}\) & \(-2\) & \(-1\) & \(-1\) & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 \\ \hline\(y_{i}\) & \(-0,3\) & 0,8 & 1,2 & 1,9 & 3,0 & 4,5 & 3,9 & 5,4 & 6,1 & 6,2 & 6,8 \\ \hline \end{tabular} \((Y \mid X=x)\) sei vom Typ \(N\left(\beta_{0}+\beta_{1} x, \sigma\right)\) (a) Man bestimme mittels der angegebenen Stichprobe Schätzwerte für die \(\mathrm{Re}\) gressionskoeffizienten \(\beta_{0}, \beta_{1}\) sowie für \(\sigma^{2}\). (b) Man gebe Konfidenzintervalle für \(\beta_{0}, \beta_{1}\) zum Konfidenzniveau \(\alpha=0,05\) an. (c) Man prüfe die Hypothesen \((\alpha=0,05)\) \(H_{0}: \beta_{0}=2\) gegen \(\quad H_{1}: \beta_{0} \neq 2\) und \(H_{0}: \beta_{1}=1\) gegen \(\quad H_{1}: \beta_{0} \neq 1\)

Die Physiker RUTHERFORD und GEIGER untersuchten die Emission von \(\alpha\) Teilchen aus einer radioaktiven Substanz. Die Anzahl \(X\) der \(\alpha\)-Teilchen, die in einem bestimmten Zeitintervall emittiert werden, ist eine diskrete Zufallsgröße. RUTHERFORD und GEIGER stellten fest, dass die Zufallsgröße \(X\) für Zeitintervalle der Länge 7,5 Sekunden die 11 Werte \(0,1, \ldots, 10\) annehmen kann. Es wurde eine Stichprobe vom Umfang \(n=2608\) untersucht, d.h. es wurden die Werte von \(X\) in 26087,5 -Sekunden-Intervallen experimentell ermittelt. Die Anzahl der Zeitintervalle, in denen \(X\) den Wert \(i(i=0,1, \ldots, 10)\) angenommen hat, sei \(n_{i} .\) Es ist \(\sum_{i=0}^{10} n_{i}=n=2608\). \begin{tabular}{lcccccccccccc} \hline\(i\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\ \hline\(n_{i}\) & 57 & 203 & 383 & 525 & 532 & 408 & 273 & 139 & 45 & 27 & 16 & \(n=2608\) \\ \hline \end{tabular} (a) Man bestimme die empirische Häufigkeitsverteilung \(\left(i, \frac{n_{i}}{n}\right)\). (b) Man berechne die Summenhäufigkeiten \(s_{i}\) und die empirische Wahrscheinlichkeitsverteilungsfunktion \(f(x)\) (Schätzung für die Wahrscheinlichkeitsverteilungsfunktion \(P\\{X

\(X\) sei eine Zufallsgröße vom Typ \(N(\mu, 1) \cdot\left[\gamma_{u}, \gamma_{o}\right]\) sei ein konkretes \(100(1-\alpha) \%\) Konfidenzintervall für den Erwartungswert \(\mu ; L=\gamma_{o}-\gamma_{u}\). (a) Beweisen Sie, dass die Sicherheitswahrscheinlichkeit \(1-\alpha\) wächst, wenn man den Stichprobenumfang verdoppelt, die Intervall-Länge \(L\) aber beibehält. Auf welchen Wert steigt speziell die Sicherheitswahrscheinlichkeit \(1-\alpha=0,90\) bei Verdoppelung des Stichprobenumfangs? (b) Um wieviel muss man den Stichprobenumfang erhöhen, wenn bei konstanter Sicherheitswahrscheinlichkeit die Länge \(L\) halbiert werden soll?

Berechnen Sie die FRÉCHET-Ableitung des Funktionals $$ f(u)=\int_{0}^{\frac{\pi}{2}} \cos u(\phi) d \phi $$ wobei \(f\) auf dem BANACH-Raum der stetigen Funktionen \(u(\phi)\) über dem Intervall \(\left[0, \frac{\pi}{2}\right]\) mit der Maximum-Norm definiert ist.

Sei \(F\) eine Abbildung von \(C([a, b])\) nach \(C([a, b])\) und zwar konkret definiert durch $$ x \mapsto F x, \quad(F x)(t)=\int_{a}^{b} k(t, s) f(s, x(s)) d s $$ wobei \(k:[a, b] \times[a, b] \rightarrow \mathbb{R}\) stetig sein soll, und \(f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}\) ebenfalls stetig ist und im zweiten Argument stetig differenzierbar sein soll. Zeigen Sie unter Nutzung des Mittelwertsatzes der Differentialrechnung, dass \(F\) FRÉCHET- differenzierbar mit der FRÉCHET-Ableitung $$ \left(F^{\prime}(x) h\right)(t)=\int_{a}^{b} k(t, s) \frac{\partial f}{\partial x}(s, x(s)) h(s) d s $$ ist.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free