Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Bestimmen Sie stationäre Punkte \(x(t)\) mit \(x(0)=1\) und \(x(2)=2\) des Funktionals $$ J(x)=\int_{0}^{2}\left[\frac{1}{2} \dot{x}^{2}+x \dot{x}+\dot{x}\right] d t $$

Short Answer

Expert verified
The stationary point is \( x(t) = \frac{1}{2}t + 1 \).

Step by step solution

01

Understand the Problem

We are given a functional \( J(x) \) that we need to find stationary points for, subject to the conditions \( x(0)=1 \) and \( x(2)=2 \). This requires using the calculus of variations to find functions \( x(t) \) that satisfy these boundary conditions and make \( J(x) \) have a stationary value.
02

Identify the Lagrangian

The integrand of the functional \( J(x) \) is \( L(x, \dot{x}) = \frac{1}{2} \dot{x}^2 + x \dot{x} + \dot{x} \). This is the Lagrangian we will use in the Euler-Lagrange equation.
03

Apply Euler-Lagrange Equation

The Euler-Lagrange equation for a functional \( J(x) = \int L(x, \dot{x}) \, dt \) is \( \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \). We need to compute the partial derivatives \( \frac{\partial L}{\partial \dot{x}} \) and \( \frac{\partial L}{\partial x} \).
04

Compute Partial Derivatives

Calculate \( \frac{\partial L}{\partial \dot{x}} = \dot{x} + x + 1 \) and \( \frac{\partial L}{\partial x} = \dot{x} \).
05

Solve the Euler-Lagrange Equation

Substitute the partial derivatives into the Euler-Lagrange equation: \( \frac{d}{dt} (\dot{x} + x + 1) - \dot{x} = 0 \). Differentiating \( \dot{x} + x + 1 \) with respect to \( t \) gives \( \ddot{x} + \dot{x} = \dot{x} \).
06

Simplify and Solve the Second Order ODE

The equation simplifies to \( \ddot{x} = 0 \). This is a second-order differential equation with a general solution \( x(t) = At + B \) for constants \( A \) and \( B \).
07

Apply Boundary Conditions

Using the boundary condition \( x(0) = 1 \), we have \( B = 1 \). Using \( x(2) = 2 \), we find that \( 2A + 1 = 2 \), giving \( A = \frac{1}{2} \). Thus, \( x(t) = \frac{1}{2}t + 1 \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Euler-Lagrange equation
To find the stationary points of a functional, the Euler-Lagrange equation is a fundamental tool. It comes from the calculus of variations and helps us determine which functions make a given functional reach a stationary value.
In simple terms, the Euler-Lagrange equation is used to find the best path or shape that minimizes or maximizes an integral.
Specifically, if we have a functional of the form \(J(x) = \int L(x, \dot{x}) \, dt\), the Euler-Lagrange equation is:
  • \( \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \)
Here's how it works:1. **Identify the Lagrangian**: This is the expression under the integral sign, \(L(x, \dot{x})\).2. **Compute partial derivatives**: Calculate \(\frac{\partial L}{\partial \dot{x}}\) and \(\frac{\partial L}{\partial x}\).3. **Solve**: Substitute these into the Euler-Lagrange equation.These steps will help you find a function \(x(t)\) that makes the functional reach a stationary value. It's crucial for solving many physics and engineering problems.
functional analysis
Functional analysis is a branch of mathematical analysis that studies spaces of functions and their properties. In the context of calculus of variations, it helps us understand how different functions behave under various operations.
Functional analysis provides tools to deal with infinite-dimensional spaces. These are spaces where each point is actually a function rather than a number.
The purpose of functional analysis in the calculus of variations includes:
  • Understanding functionals: It helps describe and analyze functionals, which are functions of functions.
  • Studying continuity and derivatives: It provides a framework for thinking about the smoothness and change of functionals.
  • Solving optimization problems: It is crucial for finding functions that optimize (maximize or minimize) a certain criterion, such as energy or length.
In practical terms, functional analysis serves as a language and toolbox for dealing with situations where functions themselves are the unknowns we need to solve for, much like we solve equations for numbers in elementary math.
boundary conditions
Boundary conditions are essential when solving problems involving differential equations or functionals. They set the constraints or limits that the solution must adhere to at specific points in the domain.Consider them as 'rules' the solution must follow:
  • They specify values of a function or its derivatives at the boundaries.
  • In our exercise, boundary conditions were \(x(0) = 1\) and \(x(2) = 2\).
These conditions ensure that the solutions we find are not just mathematically valid, but also practically meaningful in the context of the problem.For example, in physics, boundary conditions can specify how a string is attached or how a fluid behaves at a boundary. When working with these conditions:
  • Apply them after solving the differential equations.
  • Use them to determine constants in the solution.
By explicitly setting these conditions, we can better control the problem's outcomes and ensure the solution fits real-world scenarios or criteria.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Bestimmen Sie stationäre Punkte \(x(t)\) des Funktionals $$ J(x)=\int_{0}^{T} \sqrt{1+\dot{x}^{2}} d t $$ wobei \(x(0)=0\) und für das Intervallende \(T\) die Bedingung \(x(T)=r(T)=\frac{1}{T^{2}}\) gelten sollen.

Für einen zufälligen Vektor \((X, Y)\) wurden 11 Werte \(X=x_{i}\) eingestellt und dazu die Werte \(y_{i}\) der bedingten Zufallsgrößen \(\left(Y \mid X=x_{i}\right)\) gemessen: \begin{tabular}{cccccccccccc} \hline\(i\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline\(x_{i}\) & \(-2\) & \(-1\) & \(-1\) & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 \\ \hline\(y_{i}\) & \(-0,3\) & 0,8 & 1,2 & 1,9 & 3,0 & 4,5 & 3,9 & 5,4 & 6,1 & 6,2 & 6,8 \\ \hline \end{tabular} \((Y \mid X=x)\) sei vom Typ \(N\left(\beta_{0}+\beta_{1} x, \sigma\right)\) (a) Man bestimme mittels der angegebenen Stichprobe Schätzwerte für die \(\mathrm{Re}\) gressionskoeffizienten \(\beta_{0}, \beta_{1}\) sowie für \(\sigma^{2}\). (b) Man gebe Konfidenzintervalle für \(\beta_{0}, \beta_{1}\) zum Konfidenzniveau \(\alpha=0,05\) an. (c) Man prüfe die Hypothesen \((\alpha=0,05)\) \(H_{0}: \beta_{0}=2\) gegen \(\quad H_{1}: \beta_{0} \neq 2\) und \(H_{0}: \beta_{1}=1\) gegen \(\quad H_{1}: \beta_{0} \neq 1\)

Sei \(F\) eine Abbildung vom Raum der auf \([a, b]\) stetigen reellwertigen Funktionen \(C([a, b])\) (ausgestattet mit der Maximum-Norm) nach \(\mathbb{R}\) gegeben durch $$ y \mapsto F y, \quad F y=\int_{a}^{b} y(x) d x $$

Die Physiker RUTHERFORD und GEIGER untersuchten die Emission von \(\alpha\) Teilchen aus einer radioaktiven Substanz. Die Anzahl \(X\) der \(\alpha\)-Teilchen, die in einem bestimmten Zeitintervall emittiert werden, ist eine diskrete Zufallsgröße. RUTHERFORD und GEIGER stellten fest, dass die Zufallsgröße \(X\) für Zeitintervalle der Länge 7,5 Sekunden die 11 Werte \(0,1, \ldots, 10\) annehmen kann. Es wurde eine Stichprobe vom Umfang \(n=2608\) untersucht, d.h. es wurden die Werte von \(X\) in 26087,5 -Sekunden-Intervallen experimentell ermittelt. Die Anzahl der Zeitintervalle, in denen \(X\) den Wert \(i(i=0,1, \ldots, 10)\) angenommen hat, sei \(n_{i} .\) Es ist \(\sum_{i=0}^{10} n_{i}=n=2608\). \begin{tabular}{lcccccccccccc} \hline\(i\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\ \hline\(n_{i}\) & 57 & 203 & 383 & 525 & 532 & 408 & 273 & 139 & 45 & 27 & 16 & \(n=2608\) \\ \hline \end{tabular} (a) Man bestimme die empirische Häufigkeitsverteilung \(\left(i, \frac{n_{i}}{n}\right)\). (b) Man berechne die Summenhäufigkeiten \(s_{i}\) und die empirische Wahrscheinlichkeitsverteilungsfunktion \(f(x)\) (Schätzung für die Wahrscheinlichkeitsverteilungsfunktion \(P\\{X

Berechnen Sie die FRÉCHET-Ableitung des Funktionals $$ f(u)=\int_{0}^{\frac{\pi}{2}} \cos u(\phi) d \phi $$ wobei \(f\) auf dem BANACH-Raum der stetigen Funktionen \(u(\phi)\) über dem Intervall \(\left[0, \frac{\pi}{2}\right]\) mit der Maximum-Norm definiert ist.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free