Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Berechnen Sie die FRÉCHET-Ableitung des Funktionals $$ f(u)=\int_{0}^{\frac{\pi}{2}} \cos u(\phi) d \phi $$ wobei \(f\) auf dem BANACH-Raum der stetigen Funktionen \(u(\phi)\) über dem Intervall \(\left[0, \frac{\pi}{2}\right]\) mit der Maximum-Norm definiert ist.

Short Answer

Expert verified
The Fréchet derivative is the operator \( L(h) = -\int_{0}^{\frac{\pi}{2}} \sin u(\phi) \cdot h(\phi) \, d\phi \).

Step by step solution

01

Understand the Functional

The functional provided is \( f(u) = \int_{0}^{\frac{\pi}{2}} \cos u(\phi) \, d\phi \). This integral maps a continuous function \( u(\phi) \) to a real number by integrating over the interval \( \left[0, \frac{\pi}{2}\right] \). We need to find its Fréchet derivative.
02

Define Fréchet Derivative

The Fréchet derivative of a functional \( f \) at a point \( u \) is a continuous linear operator \( L \) such that for a small perturbation \( h \), the following holds: \[ f(u+h) = f(u) + L(h) + o(\|h\|) \] where \( o(\|h\|) \) denotes the little-o notation indicating terms that tend to zero faster than \( \|h\| \) as \( \|h\| \to 0 \).
03

Compute the Functional Increment

Substitute \( u + h \) into the functional: \[ f(u+h) = \int_{0}^{\frac{\pi}{2}} \cos(u(\phi) + h(\phi)) \, d\phi \]Use the series expansion for cosine: \[ \cos(a+b) = \cos a \cos b - \sin a \sin b \]This gives:\[ \cos(u+h) \approx \cos u - \sin u \cdot h \quad \text{(considering only first order terms in \( h \))} \]
04

Apply Linearization

From the cosine expansion, the linearized form is:\[ \int_{0}^{\frac{\pi}{2}} \cos(u(\phi) + h(\phi)) \, d\phi \approx \int_{0}^{\frac{\pi}{2}} \cos u(\phi) \, d\phi - \int_{0}^{\frac{\pi}{2}} \sin u(\phi) \cdot h(\phi) \, d\phi \]Here, the term \( -\int_{0}^{\frac{\pi}{2}} \sin u(\phi) \cdot h(\phi) \, d\phi \) is the linear part \( L(h) \).
05

Identify Fréchet Derivative Operator

The Fréchet derivative of \( f \) at \( u \) is the linear operator which maps \( h \) to:\[ L(h) = -\int_{0}^{\frac{\pi}{2}} \sin u(\phi) \cdot h(\phi) \, d\phi \]Thus, the Fréchet derivative is given by the operator \( L(h) = -\langle \sin u, h \rangle \). This operator is continuous due to the boundedness and linearity imposed by the integral and sine function.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Banach Space
A Banach space is a complete normed vector space. This completeness means that if you have an infinite sequence of vectors in this space, whose lengths get closer and closer to zero, then these vectors will converge to a point also in the space.
This is very important for our problem, as we deal with continuous functions defined within a specific interval.
  • Normed Space: Every vector has a length or norm assigned to it. In our problem, the maximum norm is used. It takes the supreme value (or the maximum) of the absolute values of the function within the interval.
  • Vector Space: This space comprises functions that you can add or multiply by scalars while still belonging to this space.
Understanding these properties ensures that certain analytical techniques and operations we use will behave predictably. Banach spaces are foundational in various fields like quantum physics, as they help manage complex function spaces.
Continuous Functions
Continuous functions are functions where small changes in the input result in small changes in the output. This trait is crucial when dealing with integrals and derivatives. In our context, the function \( u(\phi) \) belongs to the space of continuous functions on \([0, \frac{\pi}{2}]\).
These functions possess some essential characteristics:
  • Continuity: The function does not have sharp corners or jumps, ensuring a smooth curve.
  • Integrability:: Since continuous functions on a closed interval like \([0, \frac{\pi}{2}]\) are integrable, we are guaranteed to be able to compute the integral, which often simplifies the process of finding derivatives.
  • Boundedness:: Due to the closed and bounded interval, functions are bounded, meaning the maximum-norm can be applied, which simplifies analysis in Banach Spaces.
These properties simplify analysis, making it predictable and manageable within mathematical frameworks like Banach spaces.
Integral Calculus
Integral calculus allows us to find quantities when the rates of change are known, often represented by integrals. This is a crucial part of calculating functionals like the one introduced in the exercise.
  • Definite Integral: The expression \( \int_{0}^{\frac{\pi}{2}} \cos u(\phi) d \phi \) is a definite integral that evaluates the area under the curve of the function\( \cos u(\phi) \) over the interval \([0, \frac{\pi}{2}]\).
  • Linearization: When computing derivatives, we use integral calculus to handle small perturbations. By focusing on first-order terms, we separate the functional into a difference broken down by this operator.
  • Operator Application: The Fréchet derivative relies on integral calculus to apply a linear operator to deviations in functions, calculated as an integral like \(- \int_{0}^{\frac{\pi}{2}} \sin u(\phi) \cdot h(\phi) d \phi \).
Integral calculus is the backbone of evaluating changes in functions and finding how these contribute to larger patterns or systems in mathematical analysis.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(X\) sei eine Zufallsgröße vom Typ \(N(\mu, 1) \cdot\left[\gamma_{u}, \gamma_{o}\right]\) sei ein konkretes \(100(1-\alpha) \%\) Konfidenzintervall für den Erwartungswert \(\mu ; L=\gamma_{o}-\gamma_{u}\). (a) Beweisen Sie, dass die Sicherheitswahrscheinlichkeit \(1-\alpha\) wächst, wenn man den Stichprobenumfang verdoppelt, die Intervall-Länge \(L\) aber beibehält. Auf welchen Wert steigt speziell die Sicherheitswahrscheinlichkeit \(1-\alpha=0,90\) bei Verdoppelung des Stichprobenumfangs? (b) Um wieviel muss man den Stichprobenumfang erhöhen, wenn bei konstanter Sicherheitswahrscheinlichkeit die Länge \(L\) halbiert werden soll?

Die Physiker RUTHERFORD und GEIGER untersuchten die Emission von \(\alpha\) Teilchen aus einer radioaktiven Substanz. Die Anzahl \(X\) der \(\alpha\)-Teilchen, die in einem bestimmten Zeitintervall emittiert werden, ist eine diskrete Zufallsgröße. RUTHERFORD und GEIGER stellten fest, dass die Zufallsgröße \(X\) für Zeitintervalle der Länge 7,5 Sekunden die 11 Werte \(0,1, \ldots, 10\) annehmen kann. Es wurde eine Stichprobe vom Umfang \(n=2608\) untersucht, d.h. es wurden die Werte von \(X\) in 26087,5 -Sekunden-Intervallen experimentell ermittelt. Die Anzahl der Zeitintervalle, in denen \(X\) den Wert \(i(i=0,1, \ldots, 10)\) angenommen hat, sei \(n_{i} .\) Es ist \(\sum_{i=0}^{10} n_{i}=n=2608\). \begin{tabular}{lcccccccccccc} \hline\(i\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \\ \hline\(n_{i}\) & 57 & 203 & 383 & 525 & 532 & 408 & 273 & 139 & 45 & 27 & 16 & \(n=2608\) \\ \hline \end{tabular} (a) Man bestimme die empirische Häufigkeitsverteilung \(\left(i, \frac{n_{i}}{n}\right)\). (b) Man berechne die Summenhäufigkeiten \(s_{i}\) und die empirische Wahrscheinlichkeitsverteilungsfunktion \(f(x)\) (Schätzung für die Wahrscheinlichkeitsverteilungsfunktion \(P\\{X

Für einen zufälligen Vektor \((X, Y)\) wurden 11 Werte \(X=x_{i}\) eingestellt und dazu die Werte \(y_{i}\) der bedingten Zufallsgrößen \(\left(Y \mid X=x_{i}\right)\) gemessen: \begin{tabular}{cccccccccccc} \hline\(i\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline\(x_{i}\) & \(-2\) & \(-1\) & \(-1\) & 0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 \\ \hline\(y_{i}\) & \(-0,3\) & 0,8 & 1,2 & 1,9 & 3,0 & 4,5 & 3,9 & 5,4 & 6,1 & 6,2 & 6,8 \\ \hline \end{tabular} \((Y \mid X=x)\) sei vom Typ \(N\left(\beta_{0}+\beta_{1} x, \sigma\right)\) (a) Man bestimme mittels der angegebenen Stichprobe Schätzwerte für die \(\mathrm{Re}\) gressionskoeffizienten \(\beta_{0}, \beta_{1}\) sowie für \(\sigma^{2}\). (b) Man gebe Konfidenzintervalle für \(\beta_{0}, \beta_{1}\) zum Konfidenzniveau \(\alpha=0,05\) an. (c) Man prüfe die Hypothesen \((\alpha=0,05)\) \(H_{0}: \beta_{0}=2\) gegen \(\quad H_{1}: \beta_{0} \neq 2\) und \(H_{0}: \beta_{1}=1\) gegen \(\quad H_{1}: \beta_{0} \neq 1\)

Sei \(F\) eine Abbildung vom Raum der auf \([a, b]\) stetigen reellwertigen Funktionen \(C([a, b])\) (ausgestattet mit der Maximum-Norm) nach \(\mathbb{R}\) gegeben durch $$ y \mapsto F y, \quad F y=\int_{a}^{b} y(x) d x $$

Bestimmen Sie stationäre Punkte \(x(t)\) des Funktionals $$ J(x)=\int_{0}^{T} \sqrt{1+\dot{x}^{2}} d t $$ wobei \(x(0)=0\) und für das Intervallende \(T\) die Bedingung \(x(T)=r(T)=\frac{1}{T^{2}}\) gelten sollen.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free