Problem 6
The surface area of the sphere \(x^{2}+y^{2}+z^{2}+2 x-4 y+8 z-2=0\) is , .....
Problem 10
The value of \(\beta(2,1)+\beta(1,2)\) is \ldots.....
Problem 11
\(\int_{0}^{1} \int_{1}^{2} x y d y d x=\ldots \ldots\)
Problem 13
Value of \(\int_{0}^{1} \int_{0}^{x^{2}} x e^{y} d y d x\) in equal to (o) \(e / 2\) (b) \(e-1\) (c) \(1-e\) (d) \(d{2}-1\).
Problem 14
\(\iint x^{2} y^{4}\) dxdy over the rectangle \(0 \leq x \leq 1\) and \(0 \leq y \leq 3\) is
Problem 15
\(\int_{0}^{\pi} \int_{0}^{a x+1} r d r d \theta=\ldots \ldots\)
Problem 18
\(\int_{0}^{1} \int_{5}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y=\)
Problem 20
\(\int_{0}^{2} \int_{0}^{x^{2}} e^{y / x} d y d x=\ldots \ldots\)
Problem 22
\(\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d x d y}{1+x^{2}+y^{4}}=\ldots \ldots\)
Problem 25
\(\iint d x d y\) over the area bounded by \(x=0, y=0, x^{2}+y^{2}=1\) and \(5 y=3\), is ......