Problem 31
Curvature of a straight line in \(\begin{array}{llll}\text { (A) }- & \text { (B) zere } & \text { (C) Both }(A) \text { and }(B) & \text { (D) None ef these }\end{array}\)
Problem 33
If the equation of a eurve remains unchanged when \(x\) and \(y\) are interchanged, then the carve is eymmetrical abeut
Problem 36
Tengents at the origin for the curve \(y^{2}\left(x^{2}+y^{2}\right)+a^{2}\left(x^{2}-y^{2}\right)=0\) are.
Problem 37
The aryanptote to the curve \(y^{2}(4-x)=x^{3}\) is, it.
Problem 39
The curve \(r=a / 1+\cos \theta\) ) intersects orthogonally with the curve \(\begin{array}{llll}\text { LA) } r=b / 1-\cos \theta) & \text { (B) } r-b /(1+\sin \theta) & \text { (C) } r=b\left(1+\sin ^{2} \theta\right) & \left.\text { (D) } r=b / 1+\cos ^{2} \theta\right)\end{array}\) (V.T.U., 2010)
Problem 42
If twe curves intersect orthogonally in cartesian form, then the angle betireen the same two eurves in polar form i: (A) \(\pi / 4\) (B) Zero (C) \(\mathbf{1}\) radian (D) None of these.